Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

CAR T-cell therapy in acute myeloid leukemia

Alhomidi Almotiri
Saudi Medical Journal October 2024, 45 (10) 1007-1019; DOI: https://doi.org/10.15537/smj.2024.45.10.20240330
Alhomidi Almotiri
From the Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alhomidi Almotiri
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Saultz JN,
    2. Garzon R
    . Acute myeloid leukemia: a concise review. J Clin Med 2016; 5: 33.
    OpenUrl
  2. 2.↵
    1. Dong Y,
    2. Shi O,
    3. Zeng Q,
    4. Lu X,
    5. Wang W,
    6. Li Y, et al.
    Leukemia incidence trends at the global, regional, and national level between 1990-2017. Exp Hematol Oncol 2020; 9: 14.
    OpenUrl
  3. 3.↵
    1. Siegel RL,
    2. Miller KD,
    3. Wagle NS,
    4. Jemal A
    . Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17-48.
    OpenUrlCrossRefPubMed
  4. 4.↵
    American Cancer Society. Key statistics for acute myeloid leukemia. [Updated 2023; accessed 2023 Nov 30]. Available from: https://www.cancer.org/cancer/types/acute-myeloid-leukemia/about/key-statistics.html
  5. 5.↵
    1. Juliusson G,
    2. Lehmann S,
    3. Lazarevic V
    . Epidemiology and Etiology of AML. [Updated 2021; 2024 Apr 9]. Available from: https://doi.org/10.1007/978-3-030-72676-8
  6. 6.↵
    1. Mundt KA,
    2. Dell LD,
    3. Boffetta P,
    4. Beckett EM,
    5. Lynch HN,
    6. Desai VJ, et al.
    The importance of evaluating specific myeloid malignancies in epidemiological studies of environmental carcinogens. BMC Cancer 2021; 21: 227.
    OpenUrl
  7. 7.↵
    1. Short NJ,
    2. Kantarjian H,
    3. Ravandi F,
    4. Daver N
    . Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol 2019; 10: 2040620719827310.
    OpenUrlCrossRefPubMed
  8. 8.
    1. Dhillon S
    . Ivosidenib: first global approval. Drugs 2018; 78: 1509-1516.
    OpenUrl
  9. 9.
    1. Kim ES
    . Enasidenib: first global approval. Drugs 2017; 77: 1705-1711.
    OpenUrl
  10. 10.
    1. Deeks ED
    . Venetoclax: first global approval. Drugs 2016; 76: 979-987.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Gasiorowski RE,
    2. Clark GJ,
    3. Bradstock K,
    4. Hart DN
    . Antibody therapy for acute myeloid leukaemia. Br J Haematol 2014; 164: 481-495.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Kavanagh S,
    2. Murphy T,
    3. Law A,
    4. Yehudai D,
    5. Ho JM,
    6. Chan S, et al.
    Emerging therapies for acute myeloid leukemia: translating biology into the clinic. JCI Insight 2017; 2: e95679.
    OpenUrl
  13. 13.↵
    1. Sadelain M,
    2. Brentjens R,
    3. Rivière I
    . The basic principles of chimeric antigen receptor design. Cancer Discov 2013; 3: 388-398.
    OpenUrlAbstract/FREE Full Text
  14. 14.↵
    1. Jackson HJ,
    2. Rafiq S,
    3. Brentjens RJ
    . Driving CAR T-cells forward. Nat Rev Clin Oncol 2016; 13: 370-383.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Maude SL,
    2. Laetsch TW,
    3. Buechner J,
    4. Rives S,
    5. Boyer M,
    6. Bittencourt H, et al.
    Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378: 439-448.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Locke FL,
    2. Ghobadi A,
    3. Jacobson CA,
    4. Miklos DB,
    5. Lekakis LJ,
    6. Oluwole OO, et al.
    Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol 2019; 20: 31-42.
    OpenUrlCrossRefPubMed
  17. 17.
    1. Wang M,
    2. Munoz J,
    3. Goy A,
    4. Locke FL,
    5. Jacobson CA,
    6. Hill BT, et al.
    KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 2020; 382: 1331-1342.
    OpenUrlCrossRefPubMed
  18. 18.↵
    1. Abramson JS,
    2. Palomba ML,
    3. Gordon LI,
    4. Lunning MA,
    5. Wang M,
    6. Arnason J, et al.
    Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020; 396: 839-852.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Munshi NC,
    2. Anderson LD Jr.,
    3. Shah N,
    4. Madduri D,
    5. Berdeja J,
    6. Lonial S, et al.
    Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 2021; 384: 705-716.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Martin T,
    2. Usmani SZ,
    3. Berdeja JG,
    4. Agha M,
    5. Cohen AD,
    6. Hari P, et al.
    Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol 2023; 41: 1265-1274.
    OpenUrlCrossRef
  21. 21.↵
    1. Ritchie DS,
    2. Neeson PJ,
    3. Khot A,
    4. Peinert S,
    5. Tai T,
    6. Tainton K, et al.
    Persistence and efficacy of second generation CAR T-cell against the LeY antigen in acute myeloid leukemia. Mol Ther 2013; 21: 2122-2129.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Griffin JD,
    2. Linch D,
    3. Sabbath K,
    4. Larcom P,
    5. Schlossman SF
    . A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res 1984; 8: 521-534.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Hauswirth AW,
    2. Florian S,
    3. Printz D,
    4. Sotlar K,
    5. Krauth MT,
    6. Fritsch G, et al.
    Expression of the target receptor CD33 in CD34+/CD38-/CD123+ AML stem cells. Eur J Clin Invest 2007; 37: 73-82.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. O’Hear C,
    2. Heiber JF,
    3. Schubert I,
    4. Fey G,
    5. Geiger TL
    . Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia. Haematologica 2015; 100: 336-344.
    OpenUrlAbstract/FREE Full Text
  25. 25.↵
    1. Kenderian SS,
    2. Ruella M,
    3. Shestova O,
    4. Klichinsky M,
    5. Aikawa V,
    6. Morrissette JJ, et al.
    CD33-specific chimeric antigen receptor T-cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 2015; 29: 1637-1647.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Liu Y,
    2. Wang S,
    3. Schubert ML,
    4. Lauk A,
    5. Yao H,
    6. Blank MF, et al.
    CD33-directed immunotherapy with third-generation chimeric antigen receptor T-cells and gemtuzumab ozogamicin in intact and CD33-edited acute myeloid leukemia and hematopoietic stem and progenitor cells. Int J Cancer 2022; 150: 1141-1155.
    OpenUrl
  27. 27.↵
    1. Qin H,
    2. Yang L,
    3. Chukinas JA,
    4. Shah N,
    5. Tarun S,
    6. Pouzolles M, et al.
    Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T-cell immunotherapy for acute myeloid leukemia defines optimized construct design. J Immunother Cancer 2021; 9: e003149.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Wang QS,
    2. Wang Y,
    3. Lv HY,
    4. Han QW,
    5. Fan H,
    6. Guo B, et al.
    Treatment of CD33-directed chimeric antigen receptor-modified T-cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther 2015; 23: 184-191.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Tambaro FP,
    2. Singh H,
    3. Jones E,
    4. Rytting M,
    5. Mahadeo KM,
    6. Thompson P, et al.
    Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia 2021; 35: 3282-3286.
    OpenUrl
  30. 30.↵
    1. Haubner S,
    2. Perna F,
    3. Köhnke T,
    4. Schmidt C,
    5. Berman S,
    6. Augsberger C, et al.
    Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia 2019; 33: 64-74.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Jordan CT,
    2. Upchurch D,
    3. Szilvassy SJ,
    4. Guzman ML,
    5. Howard DS,
    6. Pettigrew AL, et al.
    The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777-1784.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Testa U,
    2. Pelosi E,
    3. Castelli G
    . CD123 as a therapeutic target in the treatment of hematological malignancies. Cancers (Basel) 2019; 11: 1358.
    OpenUrl
  33. 33.↵
    1. Arcangeli S,
    2. Rotiroti MC,
    3. Bardelli M,
    4. Simonelli L,
    5. Magnani CF,
    6. Biondi A, et al.
    Balance of anti-CD123 chimeric antigen receptor binding affinity and density for the targeting of acute myeloid leukemia. Mol Ther 2017; 25: 1933-1945.
    OpenUrlCrossRef
  34. 34.↵
    1. Sugita M,
    2. Galetto R,
    3. Zong H,
    4. Ewing-Crystal N,
    5. Trujillo-Alonso V,
    6. Mencia-Trinchant N, et al.
    Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat Commun 2022; 13: 2227.
    OpenUrl
  35. 35.↵
    1. Baroni ML,
    2. Sanchez Martinez D,
    3. Gutierrez Aguera F,
    4. Roca Ho H,
    5. Castella M,
    6. Zanetti SR, et al.
    41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer 2020; 8: e000845.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Tasian SK
    . Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled? Ther Adv Hematol 2018; 9: 135-148.
    OpenUrlPubMed
  37. 37.↵
    1. Cummins KD,
    2. Gill S
    . Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality? Haematologica 2019; 104: 1302-1308.
    OpenUrlFREE Full Text
  38. 38.↵
    1. Loff S,
    2. Dietrich J,
    3. Meyer JE,
    4. Riewaldt J,
    5. Spehr J,
    6. von Bonin M, et al.
    Rapidly switchable universal CAR-T cells for treatment of CD123-positive leukemia. Mol Ther Oncolytics 2020; 17: 408-420.
    OpenUrl
  39. 39.↵
    1. El Khawanky N,
    2. Hughes A,
    3. Yu W,
    4. Myburgh R,
    5. Matschulla T,
    6. Taromi S, et al.
    Demethylating therapy increases anti-CD123 CAR T-cell cytotoxicity against acute myeloid leukemia. Nat Commun 2021; 12: 6436.
    OpenUrl
  40. 40.↵
    1. Budde L,
    2. Song JY,
    3. Kim Y,
    4. Blanchard S,
    5. Wagner J,
    6. Stein AS, et al.
    Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T-cells: a first-in-human clinical trial. Blood 2017; 130: 811.
    OpenUrl
  41. 41.↵
    1. Budde LE,
    2. Song J,
    3. Real M Del,
    4. Kim Y,
    5. Toribio C,
    6. Wood B, et al.
    Abstract PR14: CD123CAR displays clinical activity in relapsed/refractory (r/r) acute myeloid leukemia (AML) and blastic plasmacytoid dendritic cell neoplasm (BPDCN): safety and efficacy results from a phase 1 study. Cancer Immunol Res 2020; 8: PR14-PR14.
    OpenUrlCrossRef
  42. 42.↵
    1. Chen Y,
    2. Wang J,
    3. Zhang F,
    4. Liu P
    . A perspective of immunotherapy for acute myeloid leukemia: current advances and challenges. Front Pharmacol 2023; 14: 1151032.
    OpenUrlCrossRef
  43. 43.↵
    1. Murad JM,
    2. Baumeister SH,
    3. Werner L,
    4. Daley H,
    5. Trébéden-Negre H,
    6. Reder J, et al.
    Manufacturing development and clinical production of NKG2D chimeric antigen receptor-expressing T-cells for autologous adoptive cell therapy. Cytotherapy 2018; 20: 952-963.
    OpenUrlCrossRef
  44. 44.↵
    1. Li KX,
    2. Wu HY,
    3. Pan WY,
    4. Guo MQ,
    5. Qiu DZ,
    6. He YJ, et al.
    A novel approach for relapsed/refractory FLT3mut+ acute myeloid leukaemia: synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T-cells and gilteritinib. Mol Cancer 2022; 21: 66.
    OpenUrl
  45. 45.↵
    1. Sallman DA,
    2. Kerre T,
    3. Havelange V,
    4. Poiré X,
    5. Lewalle P,
    6. Wang ES, et al.
    CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial. Lancet Haematol 2023; 10: e191-e202.
    OpenUrl
  46. 46.↵
    1. Baumeister SH,
    2. Murad J,
    3. Werner L,
    4. Daley H,
    5. Trebeden-Negre H,
    6. Gicobi JK, et al.
    Phase I trial of autologous CAR T-cells targeting NKG2D ligands in patients with AML/MDS and multiple myeloma. Cancer Immunol Res 2019; 7: 100-112.
    OpenUrlAbstract/FREE Full Text
  47. 47.↵
    1. Lonez C,
    2. Verma B,
    3. Hendlisz A,
    4. Aftimos P,
    5. Awada A,
    6. Van Den Neste E, et al.
    Study protocol for THINK: a multinational open-label phase I study to assess the safety and clinical activity of multiple administrations of NKR-2 in patients with different metastatic tumour types. BMJ Open 2017; 7: e017075.
    OpenUrlAbstract/FREE Full Text
  48. 48.↵
    1. Ma H,
    2. Padmanabhan IS,
    3. Parmar S,
    4. Gong Y
    . Targeting CLL-1 for acute myeloid leukemia therapy. J Hematol Oncol 2019; 12: 41.
    OpenUrlPubMed
  49. 49.↵
    1. Wang J,
    2. Chen S,
    3. Xiao W,
    4. Li W,
    5. Wang L,
    6. Yang S, et al.
    CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia. J Hematol Oncol 2018; 11: 7.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Zhang H,
    2. Gan WT,
    3. Hao WG,
    4. Wang PF,
    5. Li ZY,
    6. Chang LJ
    . Successful anti-CLL1 CAR T-cell therapy in secondary acute myeloid leukemia. Front Oncol 2020; 10: 685.
    OpenUrl
  51. 51.↵
    1. Zhang H,
    2. Wang P,
    3. Li Z,
    4. He Y,
    5. Gan W,
    6. Jiang H
    . Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia. Clin Cancer Res 2021; 27: 3549-3555.
    OpenUrlAbstract/FREE Full Text
  52. 52.↵
    1. Jin X,
    2. Zhang M,
    3. Sun R,
    4. Lyu H,
    5. Xiao X,
    6. Zhang X, et al.
    First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol 2022; 15: 88.
    OpenUrlCrossRef
  53. 53.↵
    1. Liu F,
    2. Cao Y,
    3. Pinz K,
    4. Ma Y,
    5. Wada M,
    6. Chen K, et al.
    First-in-human CLL1-CD33 compound CAR T-cell therapy induces complete remission in patients with refractory acute myeloid leukemia: update on phase 1 clinical trial. Blood 2018; 132: 901.
    OpenUrlCrossRef
  54. 54.↵
    1. Levis M,
    2. Small D
    . FLT3: it does matter in leukemia. Leukemia 2003; 17: 1738-1752.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Jetani H,
    2. Garcia-Cadenas I,
    3. Nerreter T,
    4. Thomas S,
    5. Rydzek J,
    6. Meijide JB, et al.
    CAR T-cells targeting FLT3 have potent activity against FLT3-ITD+ AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia 2018; 32: 1168-1179.
    OpenUrlCrossRef
  56. 56.↵
    1. Sommer C,
    2. Cheng HY,
    3. Nguyen D,
    4. Dettling D,
    5. Yeung YA,
    6. Sutton J, et al.
    Allogeneic FLT3 CAR T-cells with an off-switch exhibit potent activity against AML and can be depleted to expedite bone marrow recovery. Mol Ther 2020; 28: 2237-2251.
    OpenUrlPubMed
  57. 57.↵
    1. Wang Y,
    2. Xu Y,
    3. Li S,
    4. Liu J,
    5. Xing Y,
    6. Xing H, et al.
    Targeting FLT3 in acute myeloid leukemia using ligand-based chimeric antigen receptor-engineered T-cells. J Hematol Oncol 2018; 11: 60.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Neu S,
    2. Geiselhart A,
    3. Sproll M,
    4. Hahn D,
    5. Kuçi S,
    6. Niethammer D, et al.
    Expression of CD44 isoforms by highly enriched CD34-positive cells in cord blood, bone marrow and leukaphereses. Bone Marrow Transplant 1997; 20: 593-598.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Bendall LJ,
    2. Bradstock KF,
    3. Gottlieb DJ
    . Expression of CD44 variant exons in acute myeloid leukemia is more common and more complex than that observed in normal blood, bone marrow or CD34+ cells. Leukemia 2000; 14: 1239-1246.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Casucci M,
    2. Nicolis di Robilant B,
    3. Falcone L,
    4. Camisa B,
    5. Norelli M,
    6. Genovese P, et al.
    CD44v6-targeted T-cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood 2013; 122: 3461-3472.
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. Stornaiuolo A,
    2. Valentinis B,
    3. Sirini C,
    4. Scavullo C,
    5. Asperti C,
    6. Zhou D, et al.
    Characterization and functional analysis of CD44v6.CAR T-cells endowed with a new low-affinity nerve growth factor receptor-based spacer. Hum Gene Ther 2021; 32: 744-760.
    OpenUrl
  62. 62.↵
    1. Chang H,
    2. Salma F,
    3. Yi QL,
    4. Patterson B,
    5. Brien B,
    6. Minden MD
    . Prognostic relevance of immunophenotyping in 379 patients with acute myeloid leukemia. Leuk Res 2004; 28: 43-48.
    OpenUrlCrossRefPubMed
  63. 63.↵
    1. Kim MY,
    2. Cooper ML,
    3. Jacobs MT,
    4. Ritchey JK,
    5. Hollaway J,
    6. Fehniger TA, et al.
    CD7-deleted hematopoietic stem cells can restore immunity after CAR T-cell therapy. JCI Insight 2021; 6: e149819.
    OpenUrl
  64. 64.↵
    1. Gomes-Silva D,
    2. Atilla E,
    3. Atilla PA,
    4. Mo F,
    5. Tashiro H,
    6. Srinivasan M, et al.
    CD7 CAR T-cells for the therapy of acute myeloid leukemia. Mol Ther 2019; 27: 272-280.
    OpenUrlCrossRef
  65. 65.↵
    1. Zhong X,
    2. Ma H
    . Targeting CD38 for acute leukemia. Front Oncol 2022; 12: 1007783.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. McKenzie JL,
    2. Gan OI,
    3. Doedens M,
    4. Dick JE
    . Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells. Exp Hematol 2007; 35: 1429-1436.
    OpenUrlCrossRefPubMed
  67. 67.↵
    1. An N,
    2. Pan Y,
    3. Yang L,
    4. Zhang Q,
    5. Deng S,
    6. Zhang Q, et al.
    Anti-acute myeloid leukemia activity of CD38-CAR-T cells with PI3Kd downregulation. Mol Pharm 2023; 20: 2426-2435.
    OpenUrl
  68. 68.↵
    1. Majzner RG,
    2. Mackall CL
    . Tumor antigen escape from CAR T-cell therapy. Cancer Discov 2018; 8: 1219-1226.
    OpenUrlAbstract/FREE Full Text
  69. 69.↵
    1. Xu X,
    2. Sun Q,
    3. Liang X,
    4. Chen Z,
    5. Zhang X,
    6. Zhou X, et al.
    Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol 2019; 10: 2664.
    OpenUrlPubMed
  70. 70.↵
    1. Cohen AD,
    2. Garfall AL,
    3. Stadtmauer EA,
    4. Melenhorst JJ,
    5. Lacey SF,
    6. Lancaster E, et al.
    B-cell maturation antigen-specific CAR T-cells are clinically active in multiple myeloma. J Clin Invest 2019; 129: 2210-2221.
    OpenUrlCrossRefPubMed
  71. 71.↵
    1. Brown CE,
    2. Alizadeh D,
    3. Starr R,
    4. Weng L,
    5. Wagner JR,
    6. Naranjo A, et al.
    Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016; 375: 2561-2569.
    OpenUrlCrossRefPubMed
  72. 72.↵
    1. Cordoba S,
    2. Onuoha S,
    3. Thomas S,
    4. Pignataro DS,
    5. Hough R,
    6. Ghorashian S, et al.
    CAR T-cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia: a phase 1 trial. Nat Med 2021; 27: 1797-1805.
    OpenUrlCrossRefPubMed
  73. 73.↵
    1. Larson RC,
    2. Kann MC,
    3. Graham C,
    4. Mount CW,
    5. Castano AP,
    6. Lee WH, et al.
    Anti-TACI single and dual-targeting CAR T-cells overcome BCMA antigen loss in multiple myeloma. Nat Commun 2023; 14: 7509.
    OpenUrl
  74. 74.↵
    1. Jin X,
    2. Xie D,
    3. Sun R,
    4. Lu W,
    5. Xiao X,
    6. Yu Y, et al.
    CAR-T cells dual-target CD123 and NKG2DLs to eradicate AML cells and selectively target immunosuppressive cells. Oncoimmunology 2023; 12: 2248826.
    OpenUrl
  75. 75.↵
    1. Wang Y,
    2. Lu W,
    3. Rohrbacher L,
    4. Flaswinkel H,
    5. Emhardt AJ,
    6. Magno G, et al.
    CD33-TIM3 dual CAR T-cells: enhancing specificity while maintaining efficacy against AML. Blood 2023; 142: 3449.
    OpenUrl
  76. 76.↵
    1. Sterner RC,
    2. Sterner RM
    . CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021; 11: 69.
    OpenUrlCrossRefPubMed
  77. 77.↵
    1. Steentoft C,
    2. Migliorini D,
    3. King TR,
    4. Mandel U,
    5. June CH,
    6. Posey AD Jr.
    Glycan-directed CAR-T cells. Glycobiology 2018; 28: 656-669.
    OpenUrl
  78. 78.↵
    1. Drent E,
    2. Themeli M,
    3. Poels R,
    4. de Jong-Korlaar R,
    5. Yuan H,
    6. de Bruijn J, et al.
    A rational strategy for reducing on-target off-tumor effects of CD38-chimeric antigen receptors by affinity optimization. Mol Ther 2017; 25: 1946-1958.
    OpenUrlCrossRefPubMed
  79. 79.↵
    1. Morris EC,
    2. Neelapu SS,
    3. Giavridis T,
    4. Sadelain M
    . Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 2022; 22: 85-96.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. O’Leary MC,
    2. Lu X,
    3. Huang Y,
    4. Lin X,
    5. Mahmood I,
    6. Przepiorka D, et al.
    FDA approval summary: tisagenlecleucel for treatment of patients with relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Clin Cancer Res 2019; 25: 1142-1146.
    OpenUrlAbstract/FREE Full Text
  81. 81.↵
    1. Sharma P,
    2. Kasamon YL,
    3. Lin X,
    4. Xu Z,
    5. Theoret MR,
    6. Purohit-Sheth T
    . FDA approval summary: axicabtagene ciloleucel for second-line treatment of large B-cell lymphoma. Clin Cancer Res 2023; 29: 4331-4337.
    OpenUrl
  82. 82.↵
    1. Santomasso BD,
    2. Park JH,
    3. Salloum D,
    4. Riviere I,
    5. Flynn J,
    6. Mead E, et al.
    Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 2018; 8: 958-971.
    OpenUrlAbstract/FREE Full Text
  83. 83.↵
    1. Frey NV,
    2. Porter DL
    . Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2016; 2016: 567-572.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    1. Vanhooren J,
    2. Dobbelaere R,
    3. Derpoorter C,
    4. Deneweth L,
    5. Van Camp L,
    6. Uyttebroeck A, et al.
    CAR-T in the treatment of acute myeloid leukemia: barriers and how to overcome them. Hemasphere 2023; 7: e937.
    OpenUrl
  85. 85.↵
    1. Milone MC,
    2. Bhoj VG
    . The pharmacology of T-cell therapies. Mol Ther Methods Clin Dev 2018; 8: 210-221.
    OpenUrl
  86. 86.↵
    1. Alabanza L,
    2. Pegues M,
    3. Geldres C,
    4. Shi V,
    5. Wiltzius JJW,
    6. Sievers SA, et al.
    Function of novel anti-CD19 chimeric antigen receptors with human variable regions is affected by hinge and transmembrane domains. Mol Ther 2017; 25: 2452-2465.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Ying Z,
    2. Huang XF,
    3. Xiang X,
    4. Liu Y,
    5. Kang X,
    6. Song Y, et al.
    A safe and potent anti-CD19 CAR T-cell therapy. Nat Med 2019; 25: 947-953.
    OpenUrlCrossRefPubMed
  88. 88.↵
    1. Sommermeyer D,
    2. Hill T,
    3. Shamah SM,
    4. Salter AI,
    5. Chen Y,
    6. Mohler KM, et al.
    Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia 2017; 31: 2191-2199.
    OpenUrlPubMed
  89. 89.↵
    1. Sterner RM,
    2. Sakemura R,
    3. Cox MJ,
    4. Yang N,
    5. Khadka RH,
    6. Forsman CL, et al.
    GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 2019; 133: 697-709.
    OpenUrlAbstract/FREE Full Text
  90. 90.↵
    1. Minagawa K,
    2. Al-Obaidi M,
    3. Di Stasi A
    . Generation of suicide gene-modified chimeric antigen receptor-redirected T-cells for cancer immunotherapy. Methods Mol Biol 2019; 1895: 57-73.
    OpenUrl
  91. 91.↵
    1. Di Stasi A,
    2. Tey SK,
    3. Dotti G,
    4. Fujita Y,
    5. Kennedy-Nasser A,
    6. Martinez C, et al.
    Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673-1683.
    OpenUrlCrossRefPubMedWeb of Science
  92. 92.
    1. Juillerat A,
    2. Tkach D,
    3. Busser BW,
    4. Temburni S,
    5. Valton J,
    6. Duclert A, et al.
    Modulation of chimeric antigen receptor surface expression by a small molecule switch. BMC Biotechnol 2019; 19: 44.
    OpenUrlPubMed
  93. 93.↵
    1. Mestermann K,
    2. Giavridis T,
    3. Weber J,
    4. Rydzek J,
    5. Frenz S,
    6. Nerreter T, et al.
    The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T-cells. Sci Transl Med 2019; 11.
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 45 (10)
Saudi Medical Journal
Vol. 45, Issue 10
1 Oct 2024
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
CAR T-cell therapy in acute myeloid leukemia
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
CAR T-cell therapy in acute myeloid leukemia
Alhomidi Almotiri
Saudi Medical Journal Oct 2024, 45 (10) 1007-1019; DOI: 10.15537/smj.2024.45.10.20240330

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
CAR T-cell therapy in acute myeloid leukemia
Alhomidi Almotiri
Saudi Medical Journal Oct 2024, 45 (10) 1007-1019; DOI: 10.15537/smj.2024.45.10.20240330
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • ABSTRACT
    • Introduction
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • acute myeloid leukemia
  • CAR T-cells
  • adoptive T-cell therapy
  • chimeric antigen receptor
  • leukemia
  • cancer therapy

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire