Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Research ArticleOriginal Article
Open Access

X-ray repair cross-complementing protein 1 and 3 polymorphisms and susceptibility of breast cancer in a Jordanian population

Mazhar S. Al Zoubi
Saudi Medical Journal October 2015, 36 (10) 1163-1167; DOI: https://doi.org/10.15537/smj.2015.10.12659
Mazhar S. Al Zoubi
From the Department of Biological Sciences, Yarmouk University, Irbid, Jordan, and the Experimental and Molecular Oncology, Pathology Department, University of Pisa Visa Roma, Pisa, Italy
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

Abstract

Objectives: To elucidate the contribution of x-ray repair cross-complementing (XRCC) protein 1 399Gln, XRCC3 241M, and XRCC3-5’-UTR polymorphisms to the susceptibility of breast cancer (BC) in a Jordanian population.

Methods: Forty-six formalin fixed paraffin embedded tissue samples from BC diagnosed female patients, and 31 samples from the control group were subjected to DNA sequencing. Samples were collected between September 2013 and December 2014.

Results: The XRCC1 Arg399Gln genotype did not exhibit any significant correlation with the susceptibility of BC (odds ratio [OR]=1.45, 95% confidence interval [CI]: 0.60-3.51) (p=0.47). Likewise, XRCC3 M241T genotype did not show significant correlation with BC (OR=2.02, 95% CI: 0.50-8.21) (p=0.40). However, distribution of XRCC3-5’UTR (rs1799794 A/G) genotype showed a significant difference between the patient and control group (OR=0.73, 95% CI: 0.06-8.46) (p=0.02).

Conclusion: The XRCC3-5’UTR (rs1799794) G allele frequency was higher in cancer patients while XRCC1 (rs25487) and XRCC3 (rs861539) did not show any significant correlation with susceptibility of BC in the selected Jordanian population. Contribution of other environmental factors should be studied in future works, as well as the response of cancer therapy.

Breast cancer (BC) incidence in Jordan has been estimated at 1,237 cases in 2012, with a prevalence of 4,260 cases over 5 years, and mortality rate up to 426 cases.1 Genetic predisposition contributes to less than 10% of BC cases, which raises a demand for further research into new genetic markers of BC risks.2 Fewer than 5% of BC cases have been found to be mutated at breast cancer 1 (BRCA1) early onset and BRCA2 genes, and approximately 40% of familial BC families have been identified for genetic predisposition.3 Unfortunately, mammalian cells are habitually exposed to genotoxic agents, such as ionizing radiation that can lead to DNA damage. Many double strand break,4 and single strand break (SSB) repairing proteins have been identified including DNA repair protein homolog, or RAD tecombinase, or x-ray repair cross-complementing (XRCC)s family proteins.5 Deficiency in repairing system might contribute to cancer development due to the loss of genetic integrity and genome instability.6 Mutation in DNA repair proteins is very rare.7 Therefore, many studies have been conducted to evaluate the role of allelic polymorphisms in DNA repair genes involved in cancers development.8,9 Genetic polymorphisms in DNA repair genes XRCC1, and XRCC3 have been screened to find an association with the risk of BC.10-12 Studies have demonstrated an association between XRCC1 and XRCC3 polymorphisms, and certain cancers subsuming colorectal cancer,13 lung cancer,14 pancreatic cancer,15 head and neck cancer,16 gastric cancer,17 esophageal cancer,18 melanoma skin cancer,19 oral squamous cell carcinomas,20 lung cancer risk,21 bladder cancer,22 and BC.23 Furthermore, a meta-analysis study supported the contribution of XRCC1 Arg399Gln polymorphism in susceptibility of BC in the American population.24 On the other hand, no relationship has been found between XRCC1 and XRCC3 polymorphisms and the risk of BC,25 lung cancer,26 bladder cancer,27 prostate cancer,28 lung cancer risk,29 cutaneous malignant melanoma,30 furthermore, it may decrease the risk for myeloblastic leukemia31 and non-melanoma skin cancer.32 Alcoholism, abortion, and non-breast feeding have been associated with increased risk of BC with contribution of XRCC1 399Gln and XRCC3 T241M polymorphisms.11 Moreover, family history,12 age group,33 polycyclic aromatic hydrocarbon-DNA adducts, fruit and vegetable and antioxidant intake, and non-smokers have been suggested to be associated with the risk of BC in interaction with XRCC1 or XRCC3 polymorphisms.34 The aim of the current study was to elucidate the contribution of XRCC1 399Gln, XRCC3 241M and XRCC3-5’-UTR polymorphisms in the susceptibility of BC in the Jordanian population. This study is intended to establish a reference point for future single nucleotide polymorphism (SNP) studies in the Jordanian population, which may contribute to the development of a national cancer database.

Methods

Forty-six formalin fixed paraffin embedded tissue blocks (FFPE) were collected randomly from sporadic BC female patients between September 2013 and December 2014 at the King Abdullah University Hospital, Irbid, Jordan. All samples were chosen to be triple negative. A control group of 31 blood samples were collected from age matched normal Jordanian females without a diagnosis of BC. This study was conducted according to the principles of Helsinki Declaration.

DNA extraction

Ten-µm thickness of 4 sections of FFPE samples were deparaffinized by 2 steps of Xylene (Sigma-Aldrich Corp., St. Louis, Missouri, USA) for 5 minutes each, followed by centrifugation for 5 minutes at 1,6000 g (Microcentrifuge 5415D, Eppendorf, Germany). Xylene was cleared by 2 steps of absolute ethanol; by incubation for 5 minutes each step followed by centrifugation at 1,6000 g. ethanol (Sigma-Aldrich Corp., St. Louis, Missouri, USA) was evaporated by air drying in the chemical cabinet for 20-30 minutes. Genomic DNA from tumor tissues and corresponding control samples were prepared according to the manufacturer’s instructions Qiagen DNeasy kit (Qiagen GmbH, Hilden, Germany).

Polymerase chain reaction (PCR) amplification and DNA sequencing

The PCR amplifications targeting the XRCC1-exon-10, XRCC3-exon-7 and XRCC3-5’-UTR regions were performed using specific primers based on the XRCC1 and XRCC3 sequences obtained from the National Center for Biotechnology Information (NCBI) (Table 1). The PCR amplification was performed in 30 µl reaction volume that contained (75 mM Tris-HCl, 1.5 mM MgCls, 50 mM KCl, 20 mM (NH4) 2SO4, 0.2 mM of each primer and 1 U of Taq DNA polymerase). Polymerase chain reactions were conducted under the following cycling conditions: an initial 7 minutes of denaturation at 95°C followed by 45 cycles for 45 seconds each at 94°C, 59°C, 72°C for 1 minute, and a single final extension step for 10 minutes at 72°C. Direct DNA sequencing was performed using Big Dye Terminator version 3.1 kit (Applied Biosystems, Waltham, MA, USA). Samples were run on an ABI Prism Genetic Analyzer system 3130xl (Applied Biosystems, Waltham, MA, USA).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 1

Primer pairs of selected sequences of the target gene areas with their corresponding melting points.

Statistical analysis

Fisher’s exact test analysis was used for the calculation of p-value, odds ratio (OR) and 95% confidence interval (CI) and Hardy-Weinberg Equilibrium (HWE) evaluation. GraphPad Prism-6 software was used for statistical analysis. P<0.05 was considered significant.

Results

The mean diagnostic age of cancer patients was 54 years. Genotypes of the selected genes were confirmed by direct sequencing as shown in Figure 1. Allele frequencies in controls were consistent with Hardy-Weinberg Equilibrium (p=0.24 for Arg399Gln, p=0.33 for M241T, and p=0.97 for XRCC3-5’UTR). Genotypic distributions of the 3 positions of the selected genes are shown in Tables 2-4. Frequencies of XRCC3-5’UTR (rs1799794 A/G) genotype showed a significant difference between the patients and control group (OR=0.73, 95% CI: 0.06-8.46) (p=0.02). On the other hand, XRCC1 Arg399Gln genotype did not exhibit any significant association with the susceptibility of BC (OR=1.45, 95% CI: 0.60-3.51) (p=0.47). Likewise, screening of XRCC3 M241T genotype in cancer samples did not show a significant difference in comparison with the control group, which supports the weak association with BC risk (OR=2.02, 95% CI: 0.50-8.21) (p=0.40).

Figure 1
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1

A DNA sequencing of x-ray repair cross-complementing family proteins (XRCC)1-Arg399Gln (rs25487) single nucleotide polymorphism showing: A) homozygous CGG (Gln); B) homozygous CAG (Arg); and C) heterozygous CGG/CAG (Gln/Arg).

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 2

Genotype distribution of x-ray repair cross-complementing protein (XRCC)1 Gln399Arg (rs25487).*

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 3

Genotype distribution of x-ray repair cross-complementing protein (XRCC)3 Met241Thr (rs861539).*

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 4

Genotype distribution of x-ray repair cross-complementing protein (XRCC)3-5’UTR-A/G (rs1799794).*

Discussion

Genetic mutations in DNA repair genes are very rare in cancers; therefore, many studies have been conducted to evaluate the role of genotypic polymorphisms of many DSB and SSB repairing proteins in the development of cancer.5 Controversially, some studies have found significant correlation between certain polymorphisms of XRCC1 and XRCC3 genes and the susceptibility of various cancers including breast cancer.16,20,24,35 On the other hand, other studies have not found any significant relationship between these polymorphisms and cancer development.36,37 Contributions of other factors have been suggested in the involvement of cancer risk with XRCCs genes polymorphisms, such as age, family history, smoking, diet and alcoholism.11

The present study did not find any significant relationship between XRCC1 Arg399Gln and XRCC3 M246T genotypes and breast cancer risk, which is consistent with the findings of other studies.25 The Arg399Gln has been found to be involved in increasing BC risk among Asians (OR - 1.26, 95% CI: 0.96-1.64), and Africans (OR - 1.80, 95% CI: 0.97-3.32). In addition, it is associated with a slight increase in BC risk in Caucasians (OR - 1.08, 95% CI: 0.95-1.22).36 The current results showed a significant relationship between XRCC3-5’UTR A/G (rs1799794) genotype and BC risk. The XRCC3-5’UTR-G allele frequency was more common in cancer patients in comparison to the control group. The later polymorphism is consistent with a meta-analysis study.38 Functional studies are required to understand the role of XRCC3-5’UTR A/G (rs1799794) polymorphism in gene expression and cell proliferation.

This study does not exclude the role of XRCC1 (rs25487) and XRCC3 (rs861539) in the development of BC due to many reasons. Firstly, sample size needs to be bigger in the Jordanian population, which is one of the limitations of our study. Secondly, more clinicopathological data might have significant contribution with these polymorphisms. Finally, ethnic origin, smoking, alcoholism, abortion, non-breast feeding, and diet can be contributing factors.11 Moreover, XRCC1 (rs25487) and XRCC3 (rs861539) polymorphisms have been suggested to be involved in radiotherapy response and survival of BC patients.39 Furthermore, combination of variants of XRCC1 and XRCC3 genes has been suggested to be associated with susceptibility to BC with limited sample size.25 Moreover, a predictive value of XRCC1 (399Gln) and XRCC3 (241Met) polymorphisms in the survival of metastatic BC after radiotherapy and adjuvant chemotherapy treatment can be another benefit of such findings.39 The differences observed in the current and other studies may be due to limited sample size, type of samples (FFPE) and different genetic background.

In conclusion, XRCC3-5’UTR A/G (rs1799794) genotype showed a significant correlation with BC risk. Moreover, G allele frequency was higher in cancer patients, whereas XRCC1 (rs25487) and XRCC3 (rs861539) did not show any significant correlation with susceptibility of BC in the selected Jordanian population. Further studies are required to rule out or confirm such findings. Contribution of other environmental factors should be studied in future works, as well as the response of cancer therapy. Collection of blood samples from larger population would be more efficient for association with BC risk.

Acknowledgment

The author gratefully acknowledges Dr. Emad Malkawi, Dr. Alaa Al-Jabali, and Dr. Kalid Batayneh for their support and assistance in completing this study.

Footnotes

  • Disclosure. Author has no conflict of interests, and the work was not supported or funded by any drug company.

  • Received June 11, 2015.
  • Accepted September 4, 2015.
  • Copyright: © Saudi Medical Journal

This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

  1. ↵
    1. Ferlay J,
    2. Soerjomataram I,
    3. Dikshit R,
    4. Eser S,
    5. Mathers C,
    6. Rebelo M,
    7. et al.
    (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386.
    OpenUrlCrossRefPubMed
  2. ↵
    1. Himes DO,
    2. Clayton MF,
    3. Donaldson GW,
    4. Ellington L,
    5. Buys SS,
    6. Kinney AY
    (Aug 7, 2015) Breast cancer risk perceptions among relatives of women with uninformative negative BRCA1/2 test results: the moderating effect of the amount of shared information. J Genet Couns, [Epub ahead of print].
  3. ↵
    1. Lynch H,
    2. Synder C,
    3. Wang SM
    (2015) Considerations for comprehensive assessment of genetic predisposition in familial breast cancer. Breast J 21:67–75.
    OpenUrl
  4. ↵
    1. Gjødsbøl K,
    2. Skindersoe ME,
    3. Christensen JJ,
    4. Karlsmark T,
    5. Jørgensen B,
    6. Jensen AM,
    7. et al.
    (2012) No need for biopsies: comparison of three sample techniques for wound microbiota determination. Int Wound J 9:295–302.
    OpenUrlPubMed
  5. ↵
    1. Brem R,
    2. Hall J
    (2005) XRCC1 is required for DNA single-strand break repair in human cells. Nucleic Acids Res 33:2512–2520.
    OpenUrlCrossRefPubMed
  6. ↵
    1. Hu JJ,
    2. Smith TR,
    3. Miller MS,
    4. Lohman K,
    5. Case LD
    (2002) Genetic regulation of ionizing radiation sensitivity and breast cancer risk. Environ Mol Mutagen 39:208–215.
    OpenUrlCrossRefPubMed
  7. ↵
    1. Moses RE
    (2001) DNA damage processing defects and disease. Annu Rev Genomics Hum Genet 2:41–68.
    OpenUrlCrossRefPubMed
  8. ↵
    1. Matullo G,
    2. Palli D,
    3. Peluso M,
    4. Guarrera S,
    5. Carturan S,
    6. Celentano E,
    7. et al.
    (2001) XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects. Carcinogenesis 22:1437–1445.
    OpenUrlCrossRefPubMed
  9. ↵
    1. Jacobsen NR,
    2. Nexø BA,
    3. Olsen A,
    4. Overvad K,
    5. Wallin H,
    6. Tjønneland A,
    7. et al.
    (2003) No association between the DNA repair gene XRCC3 T241M polymorphism and risk of skin cancer and breast cancer. Cancer Epidemiol Biomarkers Prev 12:584–585.
    OpenUrlFREE Full Text
  10. ↵
    1. Loizidou MA,
    2. Michael T,
    3. Neuhausen SL,
    4. Newbold RF,
    5. Marcou Y,
    6. Kakouri E,
    7. et al.
    (2008) Genetic polymorphisms in the DNA repair genes XRCC1, XRCC2 and XRCC3 and risk of breast cancer in Cyprus. Breast Cancer Res Treat 112:575–579.
    OpenUrlCrossRefPubMed
  11. ↵
    1. Macías-Gómez NM,
    2. Peralta-Leal V,
    3. Meza-Espinoza JP,
    4. Gutiérrez-Angulo M,
    5. Durán-González J,
    6. Ramírez-González JM,
    7. et al.
    (2015) Polymorphisms of the XRCC1 gene and breast cancer risk in the Mexican population. Fam Cancer 14:349–354.
    OpenUrl
  12. ↵
    1. Figueiredo JC,
    2. Knight JA,
    3. Briollais L,
    4. Andrulis IL,
    5. Ozcelik H
    (2004) Polymorphisms XRCC1-R399Q and XRCC3-T241M and the risk of breast cancer at the Ontario site of the Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 13:583–591.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Abdel-Rahman SZ,
    2. Soliman AS,
    3. Bondy ML,
    4. Omar S,
    5. El-Badawy SA,
    6. Khaled HM,
    7. et al.
    (2000) Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett 159:79–86.
    OpenUrlCrossRefPubMed
  14. ↵
    1. Park JY,
    2. Lee SY,
    3. Jeon HS,
    4. Bae NC,
    5. Chae SC,
    6. Joo S,
    7. et al.
    (2002) Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 11:23–27.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Duell EJ,
    2. Holly EA,
    3. Bracci PM,
    4. Wiencke JK,
    5. Kelsey KT
    (2002) A population-based study of the Arg399Gln polymorphism in X-ray repair cross- complementing group 1 (XRCC1) and risk of pancreatic adenocarcinoma. Cancer Res 62:4630–4636.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Michiels S,
    2. Danoy P,
    3. Dessen P,
    4. Bera A,
    5. Boulet T,
    6. Bouchardy C,
    7. et al.
    (2007) Polymorphism discovery in 62 DNA repair genes and haplotype associations with risks for lung and head and neck cancers. Carcinogenesis 28:1731–1739.
    OpenUrlCrossRefPubMed
  17. ↵
    1. Lee SG,
    2. Kim B,
    3. Choi J,
    4. Kim C,
    5. Lee I,
    6. Song K
    (2002) Genetic polymorphisms of XRCC1 and risk of gastric cancer. Cancer Lett 187:53–60.
    OpenUrlCrossRefPubMed
  18. ↵
    1. Xing D,
    2. Qi J,
    3. Miao X,
    4. Lu W,
    5. Tan W,
    6. Lin D
    (2002) Polymorphisms of DNA repair genes XRCC1 and XPD and their associations with risk of esophageal squamous cell carcinoma in a Chinese population. Int J Cancer 100:600–605.
    OpenUrlCrossRefPubMed
  19. ↵
    1. Winsey SL,
    2. Haldar NA,
    3. Marsh HP,
    4. Bunce M,
    5. Marshall SE,
    6. Harris AL,
    7. et al.
    (2000) A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 60:5612–5616.
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Hsieh LL,
    2. Chien HT,
    3. Chen IH,
    4. Liao CT,
    5. Wang HM,
    6. Jung SM,
    7. et al.
    (2003) The XRCC1 399Gln polymorphism and the frequency of p53 mutations in Taiwanese oral squamous cell carcinomas. Cancer Epidemiol Biomarkers Prev 12:439–443.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Zhou W,
    2. Liu G,
    3. Miller DP,
    4. Thurston SW,
    5. Xu LL,
    6. Wain JC,
    7. et al.
    (2003) Polymorphisms in the DNA repair genes XRCC1 and ERCC2, smoking, and lung cancer risk. Cancer Epidemiol Biomarkers Prev 12:359–365.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Stern MC,
    2. Johnson LR,
    3. Bell DA,
    4. Taylor JA
    (2002) XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11:1004–1011.
    OpenUrlAbstract/FREE Full Text
  23. ↵
    1. Kuschel B,
    2. Auranen A,
    3. McBride S,
    4. Novik KL,
    5. Antoniou A,
    6. Lipscombe JM,
    7. et al.
    (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Bu T,
    2. Liu L,
    3. Sun Y,
    4. Zhao L,
    5. Peng Y,
    6. Zhou S,
    7. et al.
    (2014) XRCC1 Arg399Gln polymorphism confers risk of breast cancer in American population: a meta-analysis of 10846 cases and 11723 controls. PLoS One 9:e86086.
    OpenUrl
  25. ↵
    1. Smith TR,
    2. Miller MS,
    3. Lohman K,
    4. Lange EM,
    5. Case LD,
    6. Mohrenweiser HW,
    7. et al.
    (2003) Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer. Cancer Lett 190:183–190.
    OpenUrlCrossRefPubMed
  26. ↵
    1. Butkiewicz D,
    2. Rusin M,
    3. Enewold L,
    4. Shields PG,
    5. Chorazy M,
    6. Harris CC
    (2001) Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis 22:593–597.
    OpenUrlCrossRefPubMed
  27. ↵
    1. Stern MC,
    2. Umbach DM,
    3. van Gils CH,
    4. Lunn RM,
    5. Taylor JA
    (2001) DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 10:125–131.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. van Gils CH,
    2. Bostick RM,
    3. Stern MC,
    4. Taylor JA
    (2002) Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk: an example of polymorphisms in the XRCC1 gene. Cancer Epidemiol Biomarkers Prev 11:1279–1284.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Misra RR,
    2. Ratnasinghe D,
    3. Tangrea JA,
    4. Virtamo J,
    5. Andersen MR,
    6. Barrett M,
    7. et al.
    (2003) Polymorphisms in the DNA repair genes XPD, XRCC1, XRCC3, and APE/ref-1, and the risk of lung cancer among male smokers in Finland. Cancer Lett 191:171–178.
    OpenUrlCrossRefPubMed
  30. ↵
    1. Duan Z,
    2. Shen H,
    3. Lee JE,
    4. Gershenwald JE,
    5. Ross MI,
    6. Mansfield PF,
    7. et al.
    (2002) DNA repair gene XRCC3 241Met variant is not associated with risk of cutaneous malignant melanoma. Cancer Epidemiol Biomarkers Prev 11:1142–1143.
    OpenUrlFREE Full Text
  31. ↵
    1. Seedhouse C,
    2. Bainton R,
    3. Lewis M,
    4. Harding A,
    5. Russell N,
    6. Das-Gupta E
    (2002) The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 100:3761–3766.
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Nelson HH,
    2. Kelsey KT,
    3. Mott LA,
    4. Karagas MR
    (2002) The XRCC1 Arg399Gln polymorphism, sunburn, and non-melanoma skin cancer: evidence of gene-environment interaction. Cancer Res 62:152–155.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Yeh CC,
    2. Sung FC,
    3. Tang R,
    4. Chang-Chieh CR,
    5. Hsieh LL
    (2005) Polymorphisms of the XRCC1, XRCC3, and XPD genes, and colorectal cancer risk: a case-control study in Taiwan. BMC Cancer 5:12.
    OpenUrlCrossRefPubMed
  34. ↵
    1. Shen J,
    2. Gammon MD,
    3. Terry MB,
    4. Wang L,
    5. Wang Q,
    6. Zhang F,
    7. et al.
    (2005) Polymorphisms in XRCC1 modify the association between polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, dietary antioxidants, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 14:336–342.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Su Y,
    2. Zhang H,
    3. Xu F,
    4. Kong J,
    5. Yu H,
    6. Qian B
    (2015) DNA repair gene polymorphisms in relation to non-small cell lung cancer survival. Cell Physiol Biochem 36:1419–1429.
    OpenUrl
  36. ↵
    1. Huang Y,
    2. Li L,
    3. Yu L
    (2009) XRCC1 Arg399Gln, Arg194Trp and Arg280His polymorphisms in breast cancer risk: a meta-analysis. Mutagenesis 24:331–339.
    OpenUrlCrossRefPubMed
  37. ↵
    1. Li H,
    2. Ha TC,
    3. Tai BC
    (2009) XRCC1 gene polymorphisms and breast cancer risk in different populations: a meta-analysis. Breast 18:183–191.
    OpenUrlCrossRefPubMed
  38. ↵
    1. Qiu LX,
    2. Mao C,
    3. Yao L,
    4. et al.
    (2010) XRCC3 5’-UTR and IVS5-14 polymorphisms and breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 122:489–493.
    OpenUrlPubMed
  39. ↵
    1. Tengstrom M,
    2. Mannermaa A,
    3. Kosma VM,
    4. Hirvonen A,
    5. Kataja V
    (2014) XRCC1 rs25487 polymorphism predicts the survival of patients after postoperative radiotherapy and adjuvant chemotherapy for breast cancer. Anticancer Res 34:3031–3037.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 36 (10)
Saudi Medical Journal
Vol. 36, Issue 10
1 Oct 2015
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
X-ray repair cross-complementing protein 1 and 3 polymorphisms and susceptibility of breast cancer in a Jordanian population
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
X-ray repair cross-complementing protein 1 and 3 polymorphisms and susceptibility of breast cancer in a Jordanian population
Mazhar S. Al Zoubi
Saudi Medical Journal Oct 2015, 36 (10) 1163-1167; DOI: 10.15537/smj.2015.10.12659

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
X-ray repair cross-complementing protein 1 and 3 polymorphisms and susceptibility of breast cancer in a Jordanian population
Mazhar S. Al Zoubi
Saudi Medical Journal Oct 2015, 36 (10) 1163-1167; DOI: 10.15537/smj.2015.10.12659
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessment of asthma control levels in a tertiary hospital
  • The risk factors for cardiovascular disease and chronic kidney disease in patients with nonalcoholic fatty liver disease in Saudi Arabia
  • Prolonged flight exposure and its effects on sinonasal health among aircrew members
Show more Original Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire