Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

The role of microRNAs in regulating myocardial ischemia reperfusion injury

Zhi-Xing Fan and Jian Yang
Saudi Medical Journal July 2015, 36 (7) 787-793; DOI: https://doi.org/10.15537/smj.2015.7.11089
Zhi-Xing Fan
From the Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China
MM, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jian Yang
From the Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China
MM, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Cai Y,
    2. Xu H,
    3. Yan J,
    4. Zhang L,
    5. Lu Y
    (2014) Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep 9:1542–1550.
    OpenUrl
  2. ↵
    1. Araszkiewicz A,
    2. Grygier M,
    3. Lesiak M,
    4. Grajek S
    (2013) The impact of ischemia-reperfusion injury on the effectiveness of primary angioplasty in ST-segment elevation myocardial infarction. Postepy Kardiol Interwencyjnej 9:275–281.
    OpenUrl
  3. ↵
    1. Eltzschig HK,
    2. Eckle T
    (2011) Ischemia and reperfusion-from mechanism to translation. Nat Med 17:1391–1401.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Suzuki HI,
    2. Miyazono K
    (2011) Emerging complexity of microRNA generation cascades. J Biochem 149:15–25.
    OpenUrlCrossRefPubMedWeb of Science
    1. Peterson SM,
    2. Thompson JA,
    3. Ufkin ML,
    4. Sathyanarayana P,
    5. Liaw L,
    6. Congdon CB
    (2014) Common features of microRNA target prediction tools. Front Genet 5:23.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Fan ZX,
    2. Yang J
    (2014) Microribonucleic acids and vascular restenosis. Saudi Med J 35:796–801.
    OpenUrl
  6. ↵
    1. Yang J,
    2. Chen L,
    3. Yang J,
    4. Ding J,
    5. Li S,
    6. Wu H,
    7. et al.
    (2014) MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol Biol Rep 41:555–561.
    OpenUrlCrossRefPubMed
  7. ↵
    1. Lee Y,
    2. Ahn C,
    3. Han J,
    4. Choi H,
    5. Kim J,
    6. Yim J,
    7. et al.
    (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419.
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. Newman MA,
    2. Hammond SM
    (2010) Emerging paradigms of regulated microRNA Processing. Genes Dev 24:1086–1092.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Porrello ER
    (2013) Micrornas in cardiac development and regeneration. Clin Sci 125:151–166.
    OpenUrl
  10. ↵
    1. Condorelli G,
    2. Latronico MV,
    3. Cavarretta E
    (2014) Micrornas in cardiovascular diseases: Current knowledge and the road ahead. J Am Coll Cardiol 63:2177–2187.
    OpenUrlFREE Full Text
  11. ↵
    1. He B,
    2. Xiao J,
    3. Ren AJ,
    4. Zhang YF,
    5. Zhang H,
    6. Chen M,
    7. et al.
    (2011) Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci 18:22–31.
    OpenUrlCrossRefPubMed
  12. ↵
    1. Tang Y,
    2. Zheng J,
    3. Sun Y,
    4. Wu Z,
    5. Liu Z,
    6. Huang G
    (2009) MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J 50:377–387.
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Ren XP,
    2. Wu J,
    3. Wang X,
    4. Sartor MA,
    5. Qian J,
    6. Jones K,
    7. et al.
    (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia /reperfusion injury by targeting heat-shock protein20. Circulation 119:2357–2366.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Choi E,
    2. Cha MJ,
    3. Hwang KC
    (2014) Roles of Calcium Regulating MicroRNAs in Cardiac Ischemia-Reperfusion Injury. Cells 3:899–913.
    OpenUrlCrossRef
  15. ↵
    1. Zhang Q,
    2. Kandic I,
    3. Kutryk MJ
    (2011) Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun 405:42–46.
    OpenUrlCrossRefPubMed
  16. ↵
    1. Zhu H,
    2. Fan GC
    (2012) Role of microRNAs in the reperfused myocardium towards post-infarct remodeling. Cardiovasc Res 94:284–292.
    OpenUrlCrossRefPubMed
  17. ↵
    1. Wang S,
    2. Aurora AB,
    3. Johnson BA,
    4. Qi X,
    5. McAnally J,
    6. Hill JA,
    7. et al.
    (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271.
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Zernecke A,
    2. Bidzhekov K,
    3. Noels H,
    4. Shagdarsuren E,
    5. Gan L,
    6. Denecke B,
    7. et al.
    (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Bostjancic E,
    2. Zidar N,
    3. Stajer D,
    4. Glavac D
    (2010) MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169.
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Xu C,
    2. Lu Y,
    3. Pan Z,
    4. Chu W,
    5. Luo X,
    6. Lin H,
    7. et al.
    (2007) The muscle-specific microRNAs miR-1and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Lorenzen JM,
    2. Batkai S,
    3. Thum T
    (2013) Regulation of cardiac and renal ischemia-reperfusion injury by microRNAs. Free Radic Biol Med 64:78–84.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Zhang X,
    2. Wang X,
    3. Zhu H,
    4. Zhu C,
    5. Wang Y,
    6. Pu WT,
    7. et al.
    (2010) Synergistic effects of the GATA-4-mediated miR-144/451cluster in protection against simulated ischemia/reperfusion-induced cardio myocyte death. J Mol Cell Cardiol 49:841–850.
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Cha MJ,
    2. Jang JK,
    3. Ham O,
    4. Song BW,
    5. Lee SY,
    6. Lee CY,
    7. et al.
    (2013) Microrna-145 suppresses ros-induced Ca2+ overload of cardiomyocytes by targeting camkiidelta. Biochem Biophys Res Commun 435:720–726.
    OpenUrlCrossRefPubMed
  24. ↵
    1. Rane S,
    2. He M,
    3. Sayed D,
    4. Vashistha H,
    5. Malhotra A,
    6. Sadoshima J,
    7. et al.
    (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1a and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104:879–886.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Fasanaro P,
    2. D’Alessandra Y,
    3. Di Stefano V,
    4. Melchionna R,
    5. Romani S,
    6. Pompilio G,
    7. et al.
    (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283:15878–15883.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Mutharasan RK,
    2. Nagpal V,
    3. Ichikawa Y,
    4. Ardehali H
    (2011) MicroRNA-210 is upregulated in hypoxic cardiomyocytes through Akt-and p53-dependent pathways and exerts cytoprotective effects. Am J Physiol Heart Circ Physiol 301:H1519–H1530.
    OpenUrlCrossRefPubMedWeb of Science
  27. ↵
    1. Kim HW,
    2. Haider HK,
    3. Jiang S,
    4. Ashraf M
    (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284:33161–33168.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Van Rooij E,
    2. Sutherland LB,
    3. Liu N,
    4. Williams AH,
    5. McAnally J,
    6. Gerard RD,
    7. et al.
    (2006) A signature pattern of stress-responsive micrornas that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103:18255–18260.
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Aurora AB,
    2. Mahmoud AI,
    3. Luo X,
    4. Johnson BA,
    5. van Rooij E,
    6. Matsuzaki S,
    7. et al.
    (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest 122:1222–1232.
    OpenUrlCrossRefPubMedWeb of Science
  30. ↵
    1. Wang JX,
    2. Jiao JQ,
    3. Li Q,
    4. Long B,
    5. Wang K,
    6. Liu JP,
    7. et al.
    (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78.
    OpenUrlCrossRefPubMed
  31. ↵
    1. Doebele C,
    2. Bonauer A,
    3. Fischer A,
    4. Scholz A,
    5. Reiss Y,
    6. Urbich C,
    7. et al.
    (2010) Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial. Cells Blood 115:4944–4950.
    OpenUrl
  32. ↵
    1. Bonauer A,
    2. Carmona G,
    3. Iwasaki M,
    4. Mione M,
    5. Koyanagi M,
    6. Fischer A,
    7. et al.
    (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324:1710–1713.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Hullinger TG,
    2. Montgomery RL,
    3. Seto AG,
    4. Dickinson BA,
    5. Semus HM,
    6. Lynch JM,
    7. et al.
    (2012) Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 110:71–81.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Ren XP,
    2. Wu J,
    3. Wang X,
    4. Sartor MA,
    5. Qian J,
    6. Jones K,
    7. et al.
    (2009) MicroRNA-320 is involved in the regulation of cardiac ischemia /reperfusion injury by targeting heat-shock protein20. Circulation 119:2357–2366.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Yumei Y,
    2. Jose R,
    3. Perez P,
    4. Qian J,
    5. Birnbaum Y
    (2011) The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 43:534–542.
    OpenUrlCrossRefPubMedWeb of Science
  36. ↵
    1. Papagiannakopoulos T,
    2. Shapiro A,
    3. Kosik KS
    (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68:8164–8172.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Sayed D,
    2. He M,
    3. Hong C,
    4. Gao S,
    5. Rane S,
    6. Yang Z,
    7. et al.
    (2010) MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand. J Biol Chem 285:20281–20290.
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Cheng Y,
    2. Zhu P,
    3. Yang J,
    4. Liu X,
    5. Dong S,
    6. Wang X,
    7. et al.
    (2010) Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia /reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res 87:431–439.
    OpenUrlCrossRefPubMed
  39. ↵
    1. Qin Y,
    2. Yu Y,
    3. Dong H,
    4. Bian X,
    5. Guo X,
    6. Dong S
    (2012) MicroRNA 21 inhibits left ventricular remodeling in the early phase of rat model with ischemia-reperfusion injury by suppressing cell Apoptosis. Int J Med Sci 9:413–423.
    OpenUrlCrossRefPubMed
  40. ↵
    1. Sabatel C,
    2. Malvaux L,
    3. Bovy N,
    4. Deroanne C,
    5. Lambert V,
    6. Gonzalez ML,
    7. et al.
    (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 6:e16979.
    OpenUrlCrossRefPubMed
  41. ↵
    1. Xu X,
    2. Kriegel AJ,
    3. Jiao X,
    4. Liu H,
    5. Bai X,
    6. Olson J,
    7. et al.
    (2014) miR-21 in Ischemia/Reperfusion Injury: A Double-edged Sword? Physiol Genomics 46:789–797.
    OpenUrlCrossRefPubMed
  42. ↵
    1. Fiedler J,
    2. Jazbutyte V,
    3. Kirchmaier BC,
    4. Gupta SK,
    5. Lorenzen J,
    6. Hartmann D,
    7. et al.
    (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:720–730.
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Qian L,
    2. Van Laake LW,
    3. Huang Y,
    4. Liu S,
    5. Wendland MF,
    6. Srivastava D
    (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208:549–560.
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. van Rooij E,
    2. Sutherland LB,
    3. Thatcher JE,
    4. DiMaio JM,
    5. Naseem RH,
    6. Marshall WS,
    7. et al.
    (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 105:13027–13032.
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Park SY,
    2. Lee JH,
    3. Ha M,
    4. Nam JW,
    5. Kim VN
    (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16:23–29.
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 36 (7)
Saudi Medical Journal
Vol. 36, Issue 7
1 Jul 2015
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of microRNAs in regulating myocardial ischemia reperfusion injury
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
The role of microRNAs in regulating myocardial ischemia reperfusion injury
Zhi-Xing Fan, Jian Yang
Saudi Medical Journal Jul 2015, 36 (7) 787-793; DOI: 10.15537/smj.2015.7.11089

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of microRNAs in regulating myocardial ischemia reperfusion injury
Zhi-Xing Fan, Jian Yang
Saudi Medical Journal Jul 2015, 36 (7) 787-793; DOI: 10.15537/smj.2015.7.11089
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire