Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Adipose-derived mesenchymal stem cells and wound healing

Potential clinical applications in wound repair

Sami G. Almalki
Saudi Medical Journal October 2022, 43 (10) 1075-1086; DOI: https://doi.org/10.15537/smj.2022.43.10.20220522
Sami G. Almalki
From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia.
MHS, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Isakson M,
    2. de Blacam C,
    3. Whelan D,
    4. McArdle A,
    5. Clover AJ.
    Mesenchymal stem cells and cutaneous wound healing: current evidence and future potential. Stem Cells Int 2015; 2015: 831095.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Maan ZN,
    2. Januszyk M,
    3. Rennert RC,
    4. Duscher D,
    5. Rodrigues M,
    6. Fujiwara T, et al.
    Noncontact, low-frequency ultrasound therapy enhances neovascularization and wound healing in diabetic mice. Plast Reconstr Surg 2014; 134: 402e–411e.
    OpenUrl
  3. 3.↵
    1. Sen CK,
    2. Gordillo GM,
    3. Roy S,
    4. Kirsner R,
    5. Lambert L,
    6. Hunt TK, et al.
    Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 2009; 17: 763–771.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Cerqueira MT,
    2. Pirraco RP,
    3. Marques AP.
    Stem cells in skin wound healing: are we there yet? Adv Wound Care (New Rochelle) 2016; 5: 164–175.
  5. 5.↵
    1. Guo S,
    2. Dipietro LA.
    Factors affecting wound healing. J Dent Res 2010; 89: 219–229.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Hocking AM.
    Mesenchymal stem cell therapy for cutaneous wounds. Adv Wound Care (New Rochelle) 2012; 1: 166–171.
    OpenUrl
  7. 7.↵
    1. Shalaby SM,
    2. Sabbah NA,
    3. Saber T,
    4. Abdel Hamid RA.
    Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 2016; 68: 106–115.
    OpenUrl
  8. 8.↵
    1. Wei X,
    2. Yang X,
    3. Han ZP,
    4. Qu FF,
    5. Shao L,
    6. Shi YF.
    Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin 2013; 34: 747–754.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Halfon S,
    2. Abramov N,
    3. Grinblat B,
    4. Ginis I.
    Markers distinguishing mesenchymal stem cells from fibroblasts are downregulated with passaging. Stem Cells Dev 2011; 20: 53–66.
    OpenUrlCrossRefPubMedWeb of Science
  10. 10.
    1. Lee DE,
    2. Ayoub N,
    3. Agrawal DK.
    Mesenchymal stem cells and cutaneous wound healing: novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther 2016; 7: 37.
    OpenUrl
  11. 11.↵
    1. Almalki SG,
    2. Llamas Valle Y,
    3. Agrawal DK.
    MMP-2 and MMP-14 silencing inhibits VEGFR2 cleavage and induces the differentiation of porcine adipose-derived mesenchymal stem cells to endothelial cells. Stem Cells Transl Med 2017; 6: 1385–1398.
    OpenUrl
  12. 12.↵
    1. Hass R,
    2. Kasper C,
    3. Böhm S,
    4. Jacobs R.
    Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 2011; 9: 12.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Lam ATL,
    2. Reuveny S,
    3. Oh SK.
    Human mesenchymal stem cell therapy for cartilage repair: review on isolation, expansion, and constructs. Stem Cell Res 2020; 44: 101738.
    OpenUrl
  14. 14.↵
    1. Mushahary D,
    2. Spittler A,
    3. Kasper C,
    4. Weber V,
    5. Charwat V. Isolation
    , cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2018; 93: 19–31.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Kern S,
    2. Eichler H,
    3. Stoeve J,
    4. Klüter H,
    5. Bieback K.
    Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24: 1294–1301.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Almalki SG,
    2. Agrawal DK.
    Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 2016; 92: 41–51.
    OpenUrl
  17. 17.↵
    1. Boquest AC,
    2. Shahdadfar A,
    3. Brinchmann JE,
    4. Collas P.
    Isolation of stromal stem cells from human adipose tissue. Methods Mol Biol 2006; 325: 35–46.
    OpenUrlPubMed
  18. 18.↵
    1. Frykberg RG,
    2. Banks J.
    Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015; 4: 560–582.
    OpenUrl
  19. 19.↵
    1. Shin L,
    2. Peterson DA.
    Human mesenchymal stem cell grafts enhance normal and impaired wound healing by recruiting existing endogenous tissue stem/progenitor cells. Stem Cells Transl Med 2013; 2: 33–42.
    OpenUrlCrossRefPubMed
  20. 20.↵
    1. Motegi SI,
    2. Ishikawa O.
    Mesenchymal stem cells: the roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci 2017; 86: 83–89.
    OpenUrlCrossRefPubMed
  21. 21.↵
    1. Volarevic V,
    2. Arsenijevic N,
    3. Lukic ML,
    4. Stojkovic M.
    Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 2011; 29: 5–10.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Chen JS,
    2. Wong VW,
    3. Gurtner GC.
    Therapeutic potential of bone marrow-derived mesenchymal stem cells for cutaneous wound healing. Front Immunol 2012; 3: 192.
    OpenUrlPubMed
  23. 23.↵
    1. Baroni A,
    2. Buommino E,
    3. De Gregorio V,
    4. Ruocco E,
    5. Ruocco V,
    6. Wolf R.
    Structure and function of the epidermis related to barrier properties. Clin Dermatol 2012; 30: 257–262.
    OpenUrlCrossRefPubMed
  24. 24.↵
    1. Venus M,
    2. Waterman J,
    3. McNab I.
    Basic physiology of the skin. Surgery 2011; 29: 471–474.
    OpenUrl
  25. 25.↵
    1. Tottoli EM,
    2. Dorati R,
    3. Genta I,
    4. Chiesa E,
    5. Pisani S,
    6. Conti B.
    Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020; 12: 735.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Eming SA,
    2. Martin P,
    3. Tomic-Canic M.
    Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med 2014; 6: 265sr6.
    OpenUrlFREE Full Text
  27. 27.↵
    1. Broughton G 2nd.,
    2. Janis JE,
    3. Attinger CE.
    Wound healing: an overview. Plast Reconstr Surg 2006; 117: 1e-S–32e-S.
    OpenUrl
  28. 28.↵
    1. Loots MA,
    2. Lamme EN,
    3. Zeegelaar J,
    4. Mekkes JR,
    5. Bos JD,
    6. Middelkoop E.
    Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 1998; 111: 850–857.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. Wilkinson HN,
    2. Hardman MJ.
    Wound healing: cellular mechanisms and pathological outcomes. Open Biol 2020; 10: 200223.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Bielefeld KA,
    2. Amini-Nik S,
    3. Alman BA.
    Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 2013; 70: 2059–2081.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Landén NX,
    2. Li D,
    3. Ståhle M.
    Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci 2016; 73: 3861–3885.
    OpenUrlCrossRefPubMed
  32. 32.↵
    1. Demidova-Rice TN,
    2. Hamblin MR,
    3. Herman IM.
    Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 2012; 25: 304–314.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Guillamat-Prats R.
    The role of MSC in wound healing, scarring and regeneration. Cells 2021; 10: 1729.
    OpenUrl
  34. 34.↵
    1. Darby IA,
    2. Laverdet B,
    3. Bonté F,
    4. Desmoulière A.
    Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 2014; 7: 301–311.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Singer AJ,
    2. Clark RA.
    Cutaneous wound healing. N Engl J Med 1999; 34: 738–746.
    OpenUrl
  36. 36.↵
    1. Williamson D,
    2. Harding K.
    Wound healing. Medicine 2004; 32: 4–7.
    OpenUrl
  37. 37.↵
    1. Rodrigues M,
    2. Kosaric N,
    3. Bonham CA,
    4. Gurtner GC.
    Wound healing: a cellular perspective. Physiol Rev 2019; 99: 665–706.
    OpenUrlCrossRef
  38. 38.↵
    1. Shingyochi Y,
    2. Orbay H,
    3. Mizuno H.
    Adipose-derived stem cells for wound repair and regeneration. Expert Opin Biol Ther 2015; 15: 1285–1292.
    OpenUrlCrossRefPubMed
  39. 39.↵
    1. Hu MS,
    2. Rennert RC,
    3. McArdle A,
    4. Chung MT,
    5. Walmsley GG,
    6. Longaker MT, et al.
    The role of stem cells during scarless skin wound healing. Adv Wound Care (New Rochelle) 2014; 3: 304–314.
    OpenUrl
  40. 40.↵
    1. Tamama K,
    2. Kawasaki H,
    3. Kerpedjieva SS,
    4. Guan J,
    5. Ganju RK,
    6. Sen CK.
    Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem 2011; 112: 804–817.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Almalki SG,
    2. Agrawal DK.
    Effects of matrix metalloproteinases on the fate of mesenchymal stem cells. Stem Cell Res Ther 2016; 7: 129.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Hassan WU,
    2. Greiser U,
    3. Wang W.
    Role of adipose-derived stem cells in wound healing. Wound Repair Regen 2014; 22: 313–325.
    OpenUrlCrossRefPubMed
  43. 43.↵
    1. Zografou A,
    2. Papadopoulos O,
    3. Tsigris C,
    4. Kavantzas N,
    5. Michalopoulos E,
    6. Chatzistamatiou T, et al.
    Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg 2013; 71: 225–232.
    OpenUrlCrossRefPubMed
  44. 44.↵
    1. Kato Y,
    2. Iwata T,
    3. Morikawa S,
    4. Yamato M,
    5. Okano T,
    6. Uchigata Y.
    Allogeneic tansplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes 2015; 64: 2723–2734.
    OpenUrlAbstract/FREE Full Text
  45. 45.↵
    1. Lin YC,
    2. Grahovac T,
    3. Oh SJ,
    4. Ieraci M,
    5. Rubin JP,
    6. Marra KG.
    Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater 2013; 9: 5243–5250.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Nambu M,
    2. Kishimoto S,
    3. Nakamura S,
    4. Mizuno H,
    5. Yanagibayashi S,
    6. Yamamoto N, et al.
    Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg 2009; 62: 317–321.
    OpenUrlCrossRefPubMed
  47. 47.↵
    1. Huang SP,
    2. Hsu CC,
    3. Chang SC,
    4. Wang CH,
    5. Deng SC,
    6. Dai NT, et al.
    Adipose-derived stem cells seeded on acellular dermal matrix grafts enhance wound healing in a murine model of a full-thickness defect. Ann Plast Surg 2012; 69: 656–662.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Ayavoo T,
    2. Murugesan K,
    3. Gnanasekaran A.
    Roles and mechanisms of stem cell in wound healing. Stem Cell Investigation 2021; 8: 4.
    OpenUrl
  49. 49.↵
    1. Cao Y,
    2. Sun Z,
    3. Liao L,
    4. Meng Y,
    5. Han Q,
    6. Zhao RC.
    Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 2005; 332: 370–379.
    OpenUrlCrossRefPubMedWeb of Science
  50. 50.↵
    1. Matsuda K,
    2. Falkenberg KJ,
    3. Woods AA,
    4. Choi YS,
    5. Morrison WA,
    6. Dilley RJ.
    Adipose-derived stem cells promote angiogenesis and tissue formation for in vivo tissue engineering. Tissue Eng Part A 2013; 19: 1327–1335.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Hsiao ST,
    2. Asgari A,
    3. Lokmic Z,
    4. Sinclair R,
    5. Dusting GJ,
    6. Lim SY, et al.
    Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 2012; 21: 2189–2203.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. Smith AN,
    2. Willis E,
    3. Chan VT,
    4. Muffley LA,
    5. Isik FF,
    6. Gibran NS, et al.
    Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 2010; 316: 48–54.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.↵
    1. Liu X,
    2. Wang Z,
    3. Wang R,
    4. Zhao F,
    5. Shi P,
    6. Jiang Y, et al.
    Direct comparison of the potency of human mesenchymal stem cells derived from amnion tissue, bone marrow and adipose tissue at inducing dermal fibroblast responses to cutaneous wounds. Int J Mol Med 2013; 31: 407–415.
    OpenUrl
  54. 54.↵
    1. Nie C,
    2. Yang D,
    3. Xu J,
    4. Si Z,
    5. Jin X,
    6. Zhang J.
    Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant 2011; 20: 205–216.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Hsu SH,
    2. Hsieh PS.
    Self-assembled adult adipose-derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair Regen 2015; 23: 57–64.
    OpenUrl
  56. 56.↵
    1. Nowacki M,
    2. Pietkun K,
    3. Jundziłł A,
    4. Kloskowski T,
    5. Grzanka D,
    6. Skopinska-Wisniewska J, et al.
    Use of adipose-derived stem cells to support topical skin adhesive for wound closure: a preliminary report from animal in vivo study. Biomed Res Int 2016; 2016: 2505601.
    OpenUrl
  57. 57.↵
    1. Kim EK,
    2. Li G,
    3. Lee TJ,
    4. Hong JP.
    The effect of human adipose-derived stem cells on healing of ischemic wounds in a diabetic nude mouse model. Plast Reconstr Surg 2011; 128: 387–394.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Kuo YR,
    2. Wang CT,
    3. Cheng JT,
    4. Kao GS,
    5. Chiang YC,
    6. Wang CJ.
    Adipose-derived stem cells accelerate diabetic wound healing through the induction of autocrine and paracrine effects. Cell Transplant 2016; 25: 71–81.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Heo SC,
    2. Jeon ES,
    3. Lee IH,
    4. Kim HS,
    5. Kim MB,
    6. Kim JH.
    Tumor necrosis factor-α-activated human adipose tissue-derived mesenchymal stem cells accelerate cutaneous wound healing through paracrine mechanisms. J Invest Dermatol 2011; 131: 1559–1567.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Brzoska M,
    2. Geiger H,
    3. Gauer S,
    4. Baer P.
    Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun 2005; 330: 142–150.
    OpenUrlCrossRefPubMedWeb of Science
  61. 61.↵
    1. Huang SP,
    2. Huang CH,
    3. Shyu JF,
    4. Lee HS,
    5. Chen SG,
    6. Chan JY, et al.
    Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J Biomed Sci 2013; 20: 51.
    OpenUrlCrossRefPubMed
  62. 62.↵
    1. Niu P,
    2. Smagul A,
    3. Wang L,
    4. Sadvakas A,
    5. Sha Y,
    6. Pérez LM, et al.
    Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence. Oncotarget 2015; 6: 17938–17957.
    OpenUrl
  63. 63.↵
    1. Yañez R,
    2. Oviedo A,
    3. Aldea M,
    4. Bueren JA,
    5. Lamana ML.
    Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res 2010; 316: 3109–3123.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.↵
    1. Shi D,
    2. Liao L,
    3. Zhang B,
    4. Liu R,
    5. Dou X,
    6. Li J, et al.
    Human adipose tissue-derived mesenchymal stem cells facilitate the immunosuppressive effect of cyclosporin A on T lymphocytes through Jagged-1-mediated inhibition of NF-κB signaling. Exp Hematol 2011; 39: 214–224.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Kronsteiner B,
    2. Wolbank S,
    3. Peterbauer A,
    4. Hackl C,
    5. Redl H,
    6. van Griensven M, et al.
    Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells. Stem Cells Dev 2011; 20: 2115–2126.
    OpenUrlCrossRefPubMed
  66. 66.↵
    1. Kucharzewski M,
    2. Rojczyk E,
    3. Wilemska-Kucharzewska K,
    4. Wilk R,
    5. Hudecki J,
    6. Los MJ.
    Novel trends in application of stem cells in skin wound healing. Eur J Pharmacol 2019; 843: 307–315.
    OpenUrlCrossRef
  67. 67.↵
    1. González MA,
    2. Gonzalez-Rey E,
    3. Rico L,
    4. Büscher D,
    5. Delgado M.
    Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009; 136: 978–989.
    OpenUrlCrossRefPubMedWeb of Science
  68. 68.↵
    1. Wang J,
    2. Hao H,
    3. Huang H,
    4. Chen D,
    5. Han Y,
    6. Han W.
    The effect of adipose-derived stem cells on full-thickness skin grafts. Biomed Res Int 2016; 2016: 1464725.
    OpenUrl
  69. 69.↵
    1. Zhao G,
    2. Liu F,
    3. Liu Z,
    4. Zuo K,
    5. Wang B,
    6. Zhang Y, et al.
    MSC-derived exosomes attenuate cell death through suppressing AIF nucleus translocation and enhance cutaneous wound healing. Stem Cell Res Ther 2020; 11: 174.
    OpenUrlCrossRef
  70. 70.↵
    1. Farooqi AA,
    2. Desai NN,
    3. Qureshi MZ,
    4. Librelotto DRN,
    5. Gasparri ML,
    6. Bishayee A, et al.
    Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 2018; 36: 328–334.
    OpenUrl
  71. 71.↵
    1. Hettich BF,
    2. Ben-Yehuda Greenwald M,
    3. Werner S,
    4. Leroux JC.
    Exosomes for wound healing: purification optimization and identification of bioactive components. Adv Sci (Weinh) 2020; 7: 2002596.
    OpenUrl
  72. 72.↵
    1. Heo JS,
    2. Kim S,
    3. Yang CE,
    4. Choi Y,
    5. Song SY,
    6. Kim HO.
    Human adipose mesenchymal stem cell-derived exosomes: a key player in wound healing. Tissue Eng Regen Med 2021; 18: 537–548.
    OpenUrl
  73. 73.↵
    1. Toh WS,
    2. Zhang B,
    3. Lai RC,
    4. Lim SK.
    Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy 2018; 20: 1419–1426.
    OpenUrl
  74. 74.↵
    1. Lo Sicco C,
    2. Reverberi D,
    3. Balbi C,
    4. Ulivi V,
    5. Principi E,
    6. Pascucci L, et al.
    Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization. Stem Cells Transl Med 2017; 6: 1018–1028.
    OpenUrlCrossRef
  75. 75.↵
    1. Monguió-Tortajada M,
    2. Roura S,
    3. Gálvez-Montón C,
    4. Pujal JM,
    5. Aran G,
    6. Sanjurjo L, et al.
    Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics 2017; 7: 270–284.
    OpenUrlCrossRefPubMed
  76. 76.↵
    1. Jaimes Y,
    2. Naaldijk Y,
    3. Wenk K,
    4. Leovsky C,
    5. Emmrich F.
    Mesenchymal stem cell-derived microvesicles modulate lipopolysaccharides-induced inflammatory responses to microglia cells. Stem Cells 2017; 35: 812–823.
    OpenUrl
  77. 77.↵
    1. Ti D,
    2. Hao H,
    3. Tong C,
    4. Liu J,
    5. Dong L,
    6. Zheng J, et al.
    LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13: 308.
    OpenUrlCrossRefPubMed
  78. 78.↵
    1. Li X,
    2. Liu L,
    3. Yang J,
    4. Yu Y,
    5. Chai J,
    6. Wang L, et al.
    Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine 2016; 8: 72–82.
    OpenUrl
  79. 79.↵
    1. Romagnoli C,
    2. Brandi ML.
    Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 2014; 6: 144–152.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. Via AG,
    2. Frizziero A,
    3. Oliva F.
    Biological properties of mesenchymal stem cells from different sources. Muscles Ligaments Tendons J 2012; 2: 154–162.
    OpenUrl
  81. 81.↵
    1. Trengove NJ,
    2. Stacey MC,
    3. MacAuley S,
    4. Bennett N,
    5. Gibson J,
    6. Burslem F, et al.
    Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999; 7: 442–452.
    OpenUrlCrossRefPubMedWeb of Science
  82. 82.↵
    1. McCarty SM,
    2. Percival SL.
    Proteases and delayed wound healing. Adv Wound Care (New Rochelle) 2013; 2: 438–447.
    OpenUrl
  83. 83.↵
    1. Koenen P,
    2. Spanholtz TA,
    3. Maegele M,
    4. Stürmer E,
    5. Brockamp T,
    6. Neugebauer E, et al.
    Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing. Int Wound J 2015; 12: 10–16.
    OpenUrl
  84. 84.↵
    1. Garg RK,
    2. Rennert RC,
    3. Duscher D,
    4. Sorkin M,
    5. Kosaraju R,
    6. Auerbach LJ, et al.
    Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds. Stem Cells Transl Med 2014; 3: 1079–1089.
    OpenUrlCrossRefPubMed
  85. 85.↵
    1. Reckhenrich AK,
    2. Kirsch BM,
    3. Wahl EA,
    4. Schenck TL,
    5. Rezaeian F,
    6. Harder Y, et al.
    Surgical sutures filled with adipose-derived stem cells promote wound healing. PLoS One 2014; 9: e91169.
    OpenUrl
  86. 86.↵
    1. Rustad KC,
    2. Wong VW,
    3. Sorkin M,
    4. Glotzbach JP,
    5. Major MR,
    6. Rajadas J, et al.
    Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold. Biomaterials 2012; 33: 80–90.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Wang J,
    2. Geesman GJ,
    3. Hostikka SL,
    4. Atallah M,
    5. Blackwell B,
    6. Lee E, et al.
    Inhibition of activated pericentromeric SINE/Alu repeat transcription in senescent human adult stem cells reinstates self-renewal. Cell Cycle 2011; 10: 3016–3030.
    OpenUrlCrossRefPubMedWeb of Science
  88. 88.↵
    1. Gruber HE,
    2. Somayaji S,
    3. Riley F,
    4. Hoelscher GL,
    5. Norton HJ,
    6. Ingram J, et al.
    Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech Histochem 2012; 87: 303–311.
    OpenUrlCrossRefPubMed
  89. 89.↵
    1. Yagi H,
    2. Kitagawa Y.
    The role of mesenchymal stem cells in cancer development. Front Genet 2013; 4: 261.
    OpenUrlPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 43 (10)
Saudi Medical Journal
Vol. 43, Issue 10
1 Oct 2022
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Adipose-derived mesenchymal stem cells and wound healing
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Adipose-derived mesenchymal stem cells and wound healing
Sami G. Almalki
Saudi Medical Journal Oct 2022, 43 (10) 1075-1086; DOI: 10.15537/smj.2022.43.10.20220522

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Adipose-derived mesenchymal stem cells and wound healing
Sami G. Almalki
Saudi Medical Journal Oct 2022, 43 (10) 1075-1086; DOI: 10.15537/smj.2022.43.10.20220522
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • cutaneous wound healing
  • adipose-derived mesenchymal stem cells
  • epithelial cell differentiation
  • angiogenesis
  • immunomodulation
  • inflammation
  • proliferation
  • maturation and remodeling

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire