Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Effect of gut microbiota on colorectal cancer progression and treatment

Glowi A. Alasiri
Saudi Medical Journal December 2022, 43 (12) 1289-1299; DOI: https://doi.org/10.15537/smj.2022.43.12.20220367
Glowi A. Alasiri
From the Department of Biochemistry, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Matijašić M,
    2. Meštrović T,
    3. Paljetak HČ,
    4. Perić M,
    5. Barešić A,
    6. Verbanac D.
    Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int J Mol Sci 2020; 21: 2668.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Durack J,
    2. Lynch SV.
    The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 2019; 216: 20–40.
    OpenUrlAbstract/FREE Full Text
  3. 3.↵
    1. Belkaid Y,
    2. Hand TW.
    Role of the microbiota in immunity and inflammation. Cell 2014; 157: 121–141.
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    1. Hills RD Jr.,
    2. Pontefract BA,
    3. Mishcon HR,
    4. Black CA,
    5. Sutton SC,
    6. Theberge CR.
    Gut microbiome: profound implications for diet and disease. Nutrients 2019; 11: 1613.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Tanaka M,
    2. Nakayama J.
    Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int 2017; 66: 515–522.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Radjabzadeh D,
    2. Boer CG,
    3. Beth SA,
    4. van der Wal P,
    5. Kiefte-De Jong JC, et al.
    Diversity, compositional and functional differences between gut microbiota of children and adults. Sci Rep 2020; 10: 1040.
    OpenUrl
  7. 7.↵
    1. Hasan N,
    2. Yang H.
    Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019; 7: e7502.
    OpenUrlCrossRef
  8. 8.↵
    1. Dogra SK,
    2. Doré J,
    3. Damak S.
    Gut microbiota resilience: definition, link to health and strategies for intervention. Front Microbiol 2020; 11: 572921.
    OpenUrlCrossRef
  9. 9.↵
    1. Rowland I,
    2. Gibson G,
    3. Heinken A,
    4. Scott K,
    5. Swann J,
    6. Thiele I, et al.
    Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2018; 57: 1–24.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Fernández J,
    2. Redondo-Blanco S
    , Gutiérrez-del-Río I, Miguélez EM, Villar CJ, Lombó F. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: a review. J Funct Foods 2016; 25: 511–522.
    OpenUrlCrossRef
  11. 11.↵
    1. Ilhan N.
    Gut Microbiota and metabolism. Int J Med Biochem 2018; 1: 115–128.
    OpenUrl
  12. 12.↵
    1. Oliphant K,
    2. Allen-Vercoe E.
    Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 2019; 7: 91.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Wigner P,
    2. Bijak M,
    3. Saluk-Bijak J.
    Probiotics in the prevention of the calcium oxalate urolithiasis. Cells 2022; 11: 284.
    OpenUrl
  14. 14.↵
    1. Yu Y,
    2. Raka F,
    3. Adeli K.
    The role of the gut microbiota in lipid and lipoprotein metabolism. J Clin Med 2019; 8: 2227.
    OpenUrl
  15. 15.↵
    1. Kittana M,
    2. Ahmadani A,
    3. Al Marzooq F,
    4. Attlee A.
    Dietary fat effect on the gut microbiome, and its role in the modulation of gastrointestinal disorders in children with autism spectrum disorder. Nutrients 2021; 13: 3818.
    OpenUrl
  16. 16.↵
    1. Simons A,
    2. Alhanout K,
    3. Duval RE. Bacteriocins
    , antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020; 8: 639.
    OpenUrl
  17. 17.↵
    1. Otaru N,
    2. Ye K,
    3. Mujezinovic D,
    4. Berchtold L,
    5. Constancias F,
    6. Cornejo FA, et al.
    GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front Microbiol 2021; 12: 656895.
    OpenUrl
  18. 18.↵
    1. Diether NE,
    2. Willing BP.
    Microbial fermentation of dietary protein: an important factor in diet-microbe-host interaction. Microorganisms 2019; 7: 19.
    OpenUrl
  19. 19.↵
    1. Yoshii K,
    2. Hosomi K,
    3. Sawane K,
    4. Kunisawa J.
    Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 2019; 6: 48.
    OpenUrlPubMed
  20. 20.↵
    1. Motta JP,
    2. Denadai-Souza A,
    3. Sagnat D,
    4. Guiraud L,
    5. Edir A,
    6. Bonnart C, et al.
    Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10: 3224.
    OpenUrlPubMed
  21. 21.↵
    1. Di Lorenzo C,
    2. Colombo F,
    3. Biella S,
    4. Stockley C,
    5. Restani P.
    Polyphenols and human health: the role of bioavailability. Nutrients 2021; 13: 273.
    OpenUrl
  22. 22.↵
    1. Kawabata K,
    2. Yoshioka Y,
    3. Terao J.
    Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019; 24: 370.
    OpenUrlCrossRef
  23. 23.↵
    1. Marín L,
    2. Miguélez EM,
    3. Villar CJ,
    4. Lombó F.
    Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015; 2015: 905215.
    OpenUrl
  24. 24.↵
    1. Padilha M,
    2. Danneskiold-Samsøe NB,
    3. Brejnrod A,
    4. Hoffmann C,
    5. Cabral VP,
    6. Iaucci JM, et al.
    The human milk microbiota is modulated by maternal diet. Microorganisms 2019; 7: 502.
    OpenUrl
  25. 25.↵
    1. Ma J,
    2. Li Z,
    3. Zhang W,
    4. Zhang C,
    5. Zhang Y,
    6. Mei H, et al.
    Comparison of gut microbiota in exclusively breast-fed and formula-fed babies: a study of 91 term infants. Sci Rep 2020; 10: 15792.
    OpenUrlCrossRefPubMed
  26. 26.↵
    1. Carr LE,
    2. Virmani MD,
    3. Rosa F,
    4. Munblit D,
    5. Matazel KS,
    6. Elolimy AA, et al.
    Role of human milk bioactives on infants’ gut and immune health. Front Immunol 2021; 12: 604080.
    OpenUrlPubMed
  27. 27.↵
    1. Baxter NT,
    2. Schmidt AW,
    3. Venkataraman A,
    4. Kim KS,
    5. Waldron C,
    6. Schmidt TM.
    Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with 3 fermentable fibers. mBio 2019; 10: e02566–e02518.
    OpenUrlCrossRef
  28. 28.↵
    1. Milani C,
    2. Duranti S,
    3. Bottacini F,
    4. Casey E,
    5. Turroni F,
    6. Mahony J, et al.
    The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 2017; 81: e00036–e00017.
    OpenUrlPubMed
  29. 29.↵
    1. Vernocchi P,
    2. Del Chierico F,
    3. Putignani L.
    Gut microbiota metabolism and interaction with food components. Int J Mol Sci 2020; 21: 3688.
    OpenUrl
  30. 30.↵
    1. Ramírez-Pérez O,
    2. Cruz-Ramón V,
    3. Chinchilla-López P,
    4. Méndez-Sánchez N.
    The role of the gut microbiota in bile acid metabolism. Ann Hepatol 2017; 16: S21–S26.
    OpenUrl
  31. 31.↵
    1. Seo YS,
    2. Lee HB,
    3. Kim Y,
    4. Park HY.
    Dietary carbohydrate constituents related to gut dysbiosis and health. Microorganisms 2020; 8: 427.
    OpenUrl
  32. 32.↵
    1. Koliada A,
    2. Moseiko V,
    3. Romanenko M,
    4. Piven L,
    5. Lushchak O,
    6. Kryzhanovska N, et al.
    Seasonal variation in gut microbiota composition: cross-sectional evidence from Ukrainian population. BMC Microbiol 2020; 20: 100.
    OpenUrl
  33. 33.↵
    1. Kumar Singh A,
    2. Cabral C,
    3. Kumar R,
    4. Ganguly R,
    5. Kumar Rana H,
    6. Gupta A, et al.
    Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019; 11: 2216.
    OpenUrl
  34. 34.↵
    1. González A,
    2. Casado J,
    3. Lanas Á.
    Fighting the antibiotic crisis: flavonoids as promising antibacterial drugs against Helicobacter pylori infection. Front Cell Infect Microbiol 2021; 11: 709749.
    OpenUrl
  35. 35.↵
    1. Skrypnik K,
    2. Suliburska J.
    Association between the gut microbiota and mineral metabolism. J Sci Food Agric 2018; 98: 2449–2460.
    OpenUrl
  36. 36.↵
    1. Ballan R,
    2. Battistini C,
    3. Xavier-Santos D,
    4. Saad SMI.
    Interactions of probiotics and prebiotics with the gut microbiota. Prog Mol Biol Transl Sci 2020; 171: 265–300.
    OpenUrlCrossRef
  37. 37.↵
    1. Nairz M,
    2. Weiss G.
    Iron in infection and immunity. Mol Aspects Med 2020; 75: 100864.
    OpenUrl
  38. 38.↵
    1. Rinninella E,
    2. Raoul P,
    3. Cintoni M,
    4. Franceschi F,
    5. Miggiano GAD,
    6. Gasbarrini A, et al.
    What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7: 14.
    OpenUrl
  39. 39.↵
    1. Rawla P,
    2. Sunkara T,
    3. Barsouk A.
    Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14: 89–103.
    OpenUrlCrossRefPubMed
  40. 40.↵
    1. Zhang Z,
    2. Tang H,
    3. Chen P,
    4. Xie H,
    5. Tao Y.
    Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4: 41.
    OpenUrl
  41. 41.↵
    1. Lee SA,
    2. Liu F,
    3. Riordan SM,
    4. Lee CS,
    5. Zhang L.
    Global investigations of fusobacterium nucleatum in human colorectal cancer. Front Oncol 2019; 9: 566.
    OpenUrl
  42. 42.↵
    1. Datorre JG,
    2. de Carvalho AC,
    3. Guimarães DP,
    4. Reis RM.
    The role of fusobacterium nucleatum in colorectal carcinogenesis. Pathobiology 2021; 88: 127–140.
    OpenUrl
  43. 43.↵
    1. Menter DG,
    2. Davis JS,
    3. Broom BM,
    4. Overman MJ,
    5. Morris J,
    6. Kopetz S.
    Back to the colorectal cancer consensus molecular subtype future. Curr Gastroenterol Rep 2019; 21: 5.
    OpenUrl
  44. 44.↵
    1. Chen Y,
    2. Chen Y,
    3. Zhang J,
    4. Cao P,
    5. Su W,
    6. Deng Y, et al.
    Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics 2020; 10: 323–339.
    OpenUrlCrossRefPubMed
  45. 45.↵
    1. Huang X,
    2. Hong X,
    3. Wang J,
    4. Sun T,
    5. Yu T,
    6. Yu Y, et al.
    Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMedicine 2020; 61: 103037.
    OpenUrl
  46. 46.↵
    1. Wu J,
    2. Li Q,
    3. Fu X.
    Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol 2019; 12: 846–851.
    OpenUrl
  47. 47.↵
    1. Kuwahara T,
    2. Hazama S,
    3. Suzuki N,
    4. Yoshida S,
    5. Tomochika S,
    6. Nakagami Y, et al.
    Intratumoural-infiltrating CD4 + and FOXP3 + T cells as strong positive predictive markers for the prognosis of resectable colorectal cancer. Br J Cancer 2019; 121: 659–665.
    OpenUrl
  48. 48.↵
    1. Zadka Ł,
    2. Grybowski DJ,
    3. Dzięgiel P.
    Modeling of the immune response in the pathogenesis of solid tumors and its prognostic significance. Cell Oncol (Dordr) 2020; 43: 539–575.
    OpenUrl
  49. 49.↵
    1. Sun CH,
    2. Li BB,
    3. Wang B,
    4. Zhao J,
    5. Zhang XY,
    6. Li TT, et al.
    The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med 2019; 5: 178–187.
    OpenUrl
  50. 50.↵
    1. Casasanta MA,
    2. Yoo CC,
    3. Udayasuryan B,
    4. Sanders BE,
    5. Umaña A,
    6. Zhang Y, et al.
    Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci Signal 2020; 13: eaba9157.
  51. 51.↵
    1. Yu T,
    2. Guo F,
    3. Yu Y,
    4. Sun T,
    5. Ma D,
    6. Han J, et al.
    Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017; 170: 548–563.
    OpenUrlCrossRefPubMed
  52. 52.↵
    1. Zhang S,
    2. Yang Y,
    3. Weng W,
    4. Guo B,
    5. Cai G,
    6. Ma Y, et al.
    Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer. J Exp Clin Cancer Res 2019; 38: 14.
    OpenUrlCrossRef
  53. 53.↵
    1. Long X,
    2. Wong CC,
    3. Tong L,
    4. Chu ESH,
    5. Ho Szeto C,
    6. Go MYY, et al.
    Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity. Nat Microbiol 2019; 4: 2319–2330.
    OpenUrl
  54. 54.↵
    1. Purcell RV,
    2. Visnovska M,
    3. Biggs PJ,
    4. Schmeier S,
    5. Frizelle FA.
    Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 2017; 7: 11590.
    OpenUrlCrossRefPubMed
  55. 55.↵
    1. Tsoi H,
    2. Chu ESH,
    3. Zhang X,
    4. Sheng J,
    5. Nakatsu G,
    6. Ng SC, et al.
    Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 2017; 152: 1419–1433.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Dai Z,
    2. Coker OO,
    3. Nakatsu G,
    4. Wu WKK,
    5. Zhao L,
    6. Chen Z, et al.
    Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome 2018; 6: 70.
    OpenUrlCrossRefPubMed
  57. 57.↵
    1. Yang Y,
    2. Cai Q,
    3. Shu XO,
    4. Steinwandel MD,
    5. Blot WJ,
    6. Zheng W, et al.
    Prospective study of oral microbiome and colorectal cancer risk in low-income and African American populations. Int J Cancer 2019; 144: 2381–2389.
    OpenUrl
  58. 58.↵
    1. Shah MS,
    2. DeSantis TZ,
    3. Weinmaier T,
    4. McMurdie PJ,
    5. Cope JL,
    6. Altrichter A, et al.
    Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut 2018; 67: 882–891.
    OpenUrlAbstract/FREE Full Text
  59. 59.↵
    1. Ternes D,
    2. Karta J,
    3. Tsenkova M,
    4. Wilmes P,
    5. Haan S,
    6. Letellier E.
    Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 2020; 28: 401–423.
    OpenUrlCrossRef
  60. 60.↵
    1. Zamani S,
    2. Taslimi R,
    3. Sarabi A,
    4. Jasemi S,
    5. Sechi LA,
    6. Feizabadi MM.
    Enterotoxigenic Bacteroides fragilis: a possible etiological candidate for bacterially-induced colorectal precancerous and cancerous lesions. Front Cell Infect Microbiol 2020; 9: 449.
    OpenUrl
  61. 61.↵
    1. Dejea CM,
    2. Fathi P,
    3. Craig JM,
    4. Boleij A,
    5. Taddese R,
    6. Geis AL, et al.
    Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018; 359: 592–597.
    OpenUrlAbstract/FREE Full Text
  62. 62.↵
    1. Chung L,
    2. Thiele Orberg E,
    3. Geis AL,
    4. Chan JL,
    5. Fu K,
    6. DeStefano Shields CE, et al.
    Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe 2018; 23: 203–214.
    OpenUrlCrossRef
  63. 63.↵
    1. Cheng WT,
    2. Kantilal HK,
    3. Davamani F.
    The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malays J Med Sci 2020; 27: 9–21.
    OpenUrl
  64. 64.↵
    1. Zhang Y,
    2. Weng Y,
    3. Gan H,
    4. Zhao X,
    5. Zhi F.
    Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochem Biophys Res Commun 2018; 506: 907–911.
    OpenUrlCrossRef
  65. 65.↵
    1. Tawfik A,
    2. Knight P,
    3. Duckworth CA,
    4. Pritchard DM,
    5. Rhodes JM,
    6. Campbell BJ.
    Replication of Crohn’s disease mucosal E. coli isolates inside macrophages correlates with resistance to superoxide and is dependent on macrophage NF-kappa B activation. Pathogens 2019; 8: 74.
    OpenUrl
  66. 66.↵
    1. Wilson MR,
    2. Jiang Y,
    3. Villalta PW,
    4. Stornetta A,
    5. Boudreau PD,
    6. Carrá A, et al.
    The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363: eaar7785.
  67. 67.↵
    1. Iyadorai T,
    2. Mariappan V,
    3. Vellasamy KM,
    4. Wanyiri JW,
    5. Roslani AC,
    6. Lee GK, et al.
    Prevalence and association of pks+ Escherichia coli with colorectal cancer in patients at the University Malaya Medical Centre, Malaysia. PLoS One 2020; 15: e0228217.
    OpenUrl
  68. 68.↵
    1. Rebersek M.
    Gut microbiome and its role in colorectal cancer. BMC Cancer 2021; 21: 1325.
    OpenUrl
  69. 69.↵
    1. Zhang Z,
    2. Aung KM,
    3. Uhlin BE,
    4. Wai SN.
    Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep 2018; 8: 17780.
    OpenUrl
  70. 70.↵
    1. Khan S,
    2. Zaidi S,
    3. Alouffi AS,
    4. Hassan I,
    5. Imran A,
    6. Khan RA.
    Computational proteome-wide study for the prediction of Escherichia coli protein targeting in host cell organelles and their implication in development of colon cancer. ACS Omega 2020; 5: 7254–7261.
    OpenUrl
  71. 71.↵
    1. Priyadarshini M,
    2. Kotlo KU,
    3. Dudeja PK,
    4. Layden BT.
    Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol 2018; 8: 1091–1115.
    OpenUrl
  72. 72.↵
    1. Kobayashi M,
    2. Mikami D,
    3. Uwada J,
    4. Yazawa T,
    5. Kamiyama K,
    6. Kimura H, et al.
    A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget 2018; 9: 31342–31354.
    OpenUrlCrossRef
  73. 73.↵
    1. Jin YH,
    2. Swanson D,
    3. Waller M,
    4. Ozment J.
    To survive and thrive under hypercompetition: an exploratory analysis of the influence of strategic purity on truckload motor-carrier financial performance. Transp J 2017; 56: 1–34.
    OpenUrl
  74. 74.↵
    1. Alrafas HR,
    2. Busbee PB,
    3. Chitrala KN,
    4. Nagarkatti M,
    5. Nagarkatti P.
    Alterations in the gut microbiome and suppression of histone deacetylases by resveratrol are associated with attenuation of colonic inflammation and protection against colorectal cancer. J Clin Med 2020; 9: 1796.
    OpenUrl
  75. 75.↵
    1. Liang S,
    2. Mao Y,
    3. Liao M,
    4. Xu Y,
    5. Chen Y,
    6. Huang X, et al.
    Gut microbiome associated with APC gene mutation in patients with intestinal adenomatous polyps. Int J Biol Sci 2020; 16: 135–146.
    OpenUrl
  76. 76.↵
    1. Boesmans L,
    2. Valles-Colomer M,
    3. Wang J,
    4. Eeckhaut V,
    5. Falony G,
    6. Ducatelle R, et al.
    Butyrate producers as potential next-generation probiotics: safety assessment of the administration of Butyricicoccus pullicaecorum to healthy volunteers. mSystems 2018; 3: e00094–e00018.
    OpenUrl
  77. 77.↵
    1. A, T R R, Thomas S,
    2. Nisha P.
    1. K B A, Madhavan
    A, T R R, Thomas S, Nisha P. Short chain fatty acids enriched fermentation metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer cells to apoptosis. PLoS One 2019; 14: e0216604.
  78. 78.↵
    1. Luu M,
    2. Weigand K,
    3. Wedi F,
    4. Breidenbend C,
    5. Leister H,
    6. Pautz S, et al.
    Regulation of the effector function of CD8+ T cells by gut microbiota-derived metabolite butyrate. Sci Rep 2018; 8: 14430.
    OpenUrlPubMed
  79. 79.↵
    1. Parada Venegas D,
    2. De la Fuente MK,
    3. Landskron G,
    4. González MJ,
    5. Quera R,
    6. Dijkstra G, et al.
    Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019; 10: 277.
    OpenUrlCrossRefPubMed
  80. 80.↵
    1. El-Deeb NM,
    2. Yassin AM,
    3. Al-Madboly LA,
    4. El-Hawiet A.
    A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact 2018; 17: 29.
    OpenUrlCrossRefPubMed
  81. 81.↵
    1. Sivaprakasam S,
    2. Bhutia YD,
    3. Ramachandran S,
    4. Ganapathy V.
    Cell-surface and nuclear receptors in the colon as targets for bacterial metabolites and its relevance to colon health. Nutrients 2017; 9: 856.
    OpenUrl
  82. 82.↵
    1. Romagnolo DF,
    2. Donovan MG,
    3. Doetschman TC,
    4. Selmin OI.
    n-6 Linoleic acid induces epigenetics alterations associated with colonic inflammation and cancer. Nutrients 2019; 11: 171.
    OpenUrl
  83. 83.↵
    1. Nguyen TT,
    2. Lian S,
    3. Ung TT,
    4. Xia Y,
    5. Han JY,
    6. Jung YD.
    Lithocholic acid stimulates IL-8 expression in human colorectal cancer cells via activation of Erk1/2 MAPK and suppression of STAT3 activity. J Cell Biochem 2017; 118: 2958–2967.
    OpenUrl
  84. 84.↵
    1. Liu Y,
    2. Zhang S,
    3. Zhou W,
    4. Hu D,
    5. Xu H,
    6. Ji G.
    Secondary bile acids and tumorigenesis in colorectal cancer. Front Oncol 2022; 12: 813745.
    OpenUrl
  85. 85.↵
    1. San-Millán I,
    2. Brooks GA.
    Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017; 38: 119–133.
    OpenUrlCrossRefPubMed
  86. 86.↵
    1. de la Cruz-López KG,
    2. Castro-Muñoz LJ,
    3. Reyes-Hernández DO,
    4. García-Carrancá A,
    5. Manzo-Merino J.
    Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front Oncol 2019; 9: 1143.
    OpenUrlCrossRefPubMed
  87. 87.↵
    1. Wu C,
    2. Chen J,
    3. Li Y.
    Mixed oscillation flow of binary fluid with minus one capillary ratio in the Czochralski crystal growth model. Crystals 2020; 10: 213.
    OpenUrl
  88. 88.↵
    1. Zhang Y,
    2. Chen S,
    3. Zhu J,
    4. Guo S,
    5. Yue T,
    6. Xu H, et al.
    Overexpression of CBS/H2S inhibits proliferation and metastasis of colon cancer cells through downregulation of CD44. Cancer Cell Int 2022; 22: 85.
    OpenUrl
  89. 89.↵
    1. Raskov H,
    2. Burcharth J,
    3. Pommergaard HC.
    Linking gut microbiota to colorectal cancer. J Cancer 2017; 8: 3378–3395.
    OpenUrlCrossRef
  90. 90.↵
    1. Wilson ID,
    2. Nicholson JK.
    Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 2017; 179: 204–222.
    OpenUrlCrossRefPubMed
  91. 91.↵
    1. Xu J,
    2. Chen N,
    3. Wu Z,
    4. Song Y,
    5. Zhang Y,
    6. Wu N, et al.
    5-aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis. Front Microbiol 2018; 9: 1274.
    OpenUrlPubMed
  92. 92.↵
    1. Koppel N,
    2. Maini Rekdal V,
    3. Balskus EP.
    Chemical transformation of xenobiotics by the human gut microbiota. Science 2017; 356: eaag2770.
  93. 93.↵
    1. Collins SL,
    2. Patterson AD.
    The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 2020; 10: 19–32.
    OpenUrl
  94. 94.↵
    1. Selwyn FP,
    2. Cheng SL,
    3. Klaassen CD,
    4. Cui JY.
    Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics. Drug Metab Dispos 2016; 44: 262–274.
    OpenUrlAbstract/FREE Full Text
  95. 95.↵
    1. Ryu TY,
    2. Kim K,
    3. Han TS,
    4. Lee MO,
    5. Lee J,
    6. Choi J, et al.
    Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. ISME J 2022; 16: 1205–1221.
    OpenUrl
  96. 96.↵
    1. Chen Z-X,
    2. Li J-L,
    3. Pan P,
    4. Bao P,
    5. Zeng X,
    6. Zhang X-Z.
    Combination gut microbiota modulation and chemotherapy for orthotopic colorectal cancer therapy. Nano Today 2021; 41: 101329.
    OpenUrl
  97. 97.↵
    1. Dong X,
    2. Pan P,
    3. Zheng DW,
    4. Bao P,
    5. Zeng X,
    6. Zhang XZ.
    Bioinorganic hybrid bacteriophage for modulation of intestinal microbiota to remodel tumor-immune microenvironment against colorectal cancer. Sci Adv 2020; 6: eaba1590.
PreviousNext
Back to top

In this issue

Saudi Medical Journal
Vol. 43, Issue 12
1 Dec 2022
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effect of gut microbiota on colorectal cancer progression and treatment
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Effect of gut microbiota on colorectal cancer progression and treatment
Glowi A. Alasiri
Saudi Medical Journal Dec 2022, 43 (12) 1289-1299; DOI: 10.15537/smj.2022.43.12.20220367

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Effect of gut microbiota on colorectal cancer progression and treatment
Glowi A. Alasiri
Saudi Medical Journal Dec 2022, 43 (12) 1289-1299; DOI: 10.15537/smj.2022.43.12.20220367
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • The expected economic burden on the healthcare system because of quarantining patients with monkeypox virus
  • The utilization of artificial intelligence applications to improve breast cancer detection and prognosis
  • Early recognition of pulmonary complications of sickle cell disease
Show more Review Article

Similar Articles

Keywords

  • gut microbiota
  • colorectal cancer
  • metabolites
  • treatment

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2023 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire