Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Immunomodulatory effects of BAFF and APRIL cytokines in post-pulmonary infection lung cancer

Implications for drug resistance and progression

Wael Alturaiki
Saudi Medical Journal March 2024, 45 (3) 223-229; DOI: https://doi.org/10.15537/smj.2024.45.3.20230873
Wael Alturaiki
From the Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia.
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wael Alturaiki
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Mollberg N,
    2. Surati M,
    3. Demchuk C,
    4. Fathi R,
    5. Salama A,
    6. Husain A, et al.
    Mind-mapping for lung cancer: towards a personalized therapeutics approach. Adv Therapy 2011; 28: 173-194.
    OpenUrl
  2. 2.↵
    Lung Cancer Statistics. [Cited 2023 Oct 19]. Available from: https://www.wcrf.org/cancer-trends/lung-cancer-statistics/
  3. 3.↵
    1. Kannampuzha S,
    2. Mukherjee AG,
    3. Wanjari UR,
    4. Gopalakrishnan AV,
    5. Murali R,
    6. Namachivayam A, et al.
    A systematic role of metabolomics, metabolic pathways, and chemical metabolism in lung cancer. Vaccines (Basel) 2023; 11: 381.
    OpenUrl
  4. 4.↵
    1. Lemjabbar-Alaoui H,
    2. Hassan OU,
    3. Yang Y-W,
    4. Buchanan P.
    Lung cancer: Biology and treatment options. Biochim Biophys Acta 2015; 1856: 189-210.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Maacha S,
    2. Bhat AA,
    3. Jimenez L,
    4. Raza A,
    5. Haris M,
    6. Uddin S, et al.
    Extracellular vesicles-mediated intercellular communication: roles in the tumor microenvironment and anti-cancer drug resistance. Mol Cancer 2019; 18: 55.
    OpenUrlCrossRef
  6. 6.↵
    1. Otsuki Y,
    2. Saya H,
    3. Arima Y.
    Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2018; 247: 462-472.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Ullah MA,
    2. Mackay F.
    The BAFF-APRIL system in cancer. Cancers (Basel) 2023; 15: 1791.
    OpenUrl
  8. 8.↵
    1. Alturaiki W,
    2. McFarlane AJ,
    3. Rose K,
    4. Corkhill R,
    5. McNamara PS,
    6. Schwarze J, et al.
    Expression of the B cell differentiation factor BAFF and chemokine CXCL13 in a murine model of respiratory syncytial virus infection. Cytokine 2018; 110: 267-271.
    OpenUrlCrossRef
  9. 9.
    1. McNamara P,
    2. Fonceca A,
    3. Howarth D,
    4. Correia J,
    5. Slupsky J,
    6. Trinick R, et al.
    Respiratory syncytial virus infection of airway epithelial cells, in vivo and in vitro, supports pulmonary antibody responses by inducing expression of the B cell differentiation factor BAFF. Thorax 2013; 68: 76-81.
    OpenUrlAbstract/FREE Full Text
  10. 10.↵
    1. Reed JL,
    2. Welliver TP,
    3. Sims GP,
    4. McKinney L,
    5. Velozo L,
    6. Avendano L, et al.
    Innate immune signals modulate antiviral and polyreactive antibody responses during severe respiratory syncytial virus infection. J Infect Dis 2009; 199: 1128-1138.
    OpenUrlCrossRefPubMed
  11. 11.↵
    1. Neill DR,
    2. Saint GL,
    3. Bricio-Moreno L,
    4. Fothergill JL,
    5. Southern KW,
    6. Winstanley C, et al.
    The B lymphocyte differentiation factor (BAFF) is expressed in the airways of children with CF and in lungs of mice infected with Pseudomonas aeruginosa. PloS one 2014; 9: e95892.
    OpenUrlCrossRef
  12. 12.↵
    1. Akbay EA,
    2. Koyama S,
    3. Carretero J,
    4. Altabef A,
    5. Tchaicha JH,
    6. Christensen CL, et al.
    Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 2013; 3: 1355-1363.
    OpenUrlAbstract/FREE Full Text
  13. 13.↵
    1. Wu M,
    2. Liang Y,
    3. Zhang X.
    Changes in pulmonary microenvironment aids lung metastasis of breast cancer. Front Oncol 2022; 12: 860932.
    OpenUrl
  14. 14.↵
    1. Jiang X,
    2. Wang J,
    3. Deng X,
    4. Xiong F,
    5. Zhang S,
    6. Gong Z, et al.
    The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 2020; 39: 204.
    OpenUrl
  15. 15.↵
    1. Yi M,
    2. Xu L,
    3. Jiao Y,
    4. Luo S,
    5. Li A,
    6. Wu K.
    The role of cancer-derived microRNAs in cancer immune escape. JJ Hematol Oncol 2020; 13: 1-14.
    OpenUrl
  16. 16.↵
    1. Wang H,
    2. Wang R-H,
    3. Zhou J-G,
    4. Hou W,
    5. Wong AH-H.
    Uncovering drug resistance during cancer therapy. Front Genet 2022 13: 945842.
    OpenUrl
  17. 17.↵
    1. Li L.
    Drug resistance in lung cancer chemotherapy and personalized chemotherapy. Front Cell Dev Biol 2022; 10: 971477.
    OpenUrl
  18. 18.↵
    1. Moreaux J,
    2. Legouffe E,
    3. Jourdan E,
    4. Quittet P,
    5. Rème T,
    6. Lugagne C, et al.
    BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148-3157.
    OpenUrlAbstract/FREE Full Text
  19. 19.
    1. Sakai J,
    2. Akkoyunlu M.
    The role of BAFF system molecules in host response to pathogens. Clin Microbiol Rev 2017; 30: 991-1014.
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    1. Alturaiki W.
    The roles of B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) in allergic asthma. Immunol Lett 2020; 225: 25-30.
    OpenUrl
  21. 21.↵
    1. Vincent FB,
    2. Saulep-Easton D,
    3. Figgett WA,
    4. Fairfax KA,
    5. Mackay F.
    The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev 2013; 24: 203-215.
    OpenUrlCrossRefPubMedWeb of Science
  22. 22.↵
    1. Nakayamada S,
    2. Tanaka Y.
    BAFF-and APRIL-targeted therapy in systemic autoimmune diseases. Inflamm Regen 2016; 36: 1-6.
    OpenUrlCrossRefPubMed
  23. 23.↵
    1. Kern C,
    2. Cornuel J-F,
    3. Billard C,
    4. Tang R,
    5. Rouillard D,
    6. Stenou V, et al.
    Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood 2004; 103: 679-688.
    OpenUrlAbstract/FREE Full Text
  24. 24.↵
    1. Dechkhajorn W,
    2. Benjathummarak S,
    3. Glaharn S,
    4. Chaisri U,
    5. Viriyavejakul P,
    6. Maneerat Y.
    The activation of BAFF/APRIL system in spleen and lymph nodes of Plasmodium falciparum infected patients. Sci Rep 2020; 10: 3865.
    OpenUrl
  25. 25.↵
    1. Schwaller J,
    2. Schneider P,
    3. Mhawech-Fauceglia P,
    4. McKee T,
    5. Myit S,
    6. Matthes T, et al.
    Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human B-cell lymphoma aggressiveness. Blood 2007; 109: 331-338.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Birnbaum T,
    2. Langer S,
    3. Roeber S,
    4. Von Baumgarten L,
    5. Straube A.
    Expression of B-cell activating factor, a proliferating inducing ligand and its receptors in primary central nervous system lymphoma. Neurol Int 2013; 5: e4.
    OpenUrl
  27. 27.↵
    1. Lascano V,
    2. Guadagnoli M,
    3. Schot JG,
    4. Luijks DM,
    5. Guikema JE,
    6. Cameron K, et al.
    Chronic lymphocytic leukemia disease progression is accelerated by APRIL-TACI interaction in the TCL1 transgenic mouse model. Blood 2013; 122: 3960-3963.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Pelekanou V,
    2. Notas G,
    3. Athanasouli P,
    4. Alexakis K,
    5. Kiagiadaki F,
    6. Peroulis N, et al.
    APRIL and BAFF increase breast cancer cell stemness. bioRxiv 2017: 151902.
  29. 29.↵
    1. Pelekanou V,
    2. Notas G,
    3. Athanasouli P,
    4. Alexakis K,
    5. Kiagiadaki F,
    6. Peroulis N, et al.
    BCMA (TNFRSF17) induces APRIL and BAFF mediated breast cancer cell stemness. Front Oncol 2018; 8: 301.
    OpenUrl
  30. 30.↵
    1. Li W,
    2. Li J,
    3. Su C,
    4. Zou WY,
    5. Luo S.
    New targets of PS-341: BAFF and APRIL. Med Oncol 2010; 27: 439-445.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Nishio M,
    2. Endo T,
    3. Tsukada N,
    4. Ohata J,
    5. Kitada S,
    6. Reed JC, et al.
    Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1α. Blood 2005; 106: 1012-1020.
    OpenUrlAbstract/FREE Full Text
  32. 32.↵
    1. Haiat S,
    2. Billard C,
    3. Quiney C,
    4. Ajchenbaum‐Cymbalista F,
    5. Kolb JP.
    Role of BAFF and APRIL in human B‐cell chronic lymphocytic leukaemia. Immunology 2006; 118: 281-292.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.↵
    1. Cols M,
    2. Barra CM,
    3. He B,
    4. Puga I,
    5. Xu W,
    6. Chiu A, et al.
    Stromal endothelial cells establish a bidirectional crosstalk with chronic lymphocytic leukemia cells through the TNF-related factors BAFF, APRIL, and CD40L. J Immunol 2012; 188: 6071-683.
    OpenUrlAbstract/FREE Full Text
  34. 34.↵
    1. Paiva C,
    2. Rowland TA,
    3. Sreekantham B,
    4. Godbersen C,
    5. Best SR,
    6. Kaur P, et al.
    SYK inhibition thwarts the BAFF-B-cell receptor crosstalk and thereby antagonizes Mcl-1 in chronic lymphocytic leukemia. Haematologica 2017; 102: 1890-1900.
    OpenUrlAbstract/FREE Full Text
  35. 35.↵
    1. Endo T,
    2. Nishio M,
    3. Enzler T,
    4. Cottam HB,
    5. Fukuda T,
    6. James DF, et al.
    BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-κB pathway. Blood 2007;109: 703-710.
    OpenUrlAbstract/FREE Full Text
  36. 36.↵
    1. Hermansen JU,
    2. Yin Y,
    3. Urban A,
    4. Myklebust CV,
    5. Karlsen L,
    6. Melvold K, et al.
    A tumor microenvironment model of chronic lymphocytic leukemia enables drug sensitivity testing to guide precision medicine. Cell Death Discov 2023; 9: 125.
    OpenUrl
  37. 37.↵
    1. Bolkun L,
    2. Grubczak K,
    3. Schneider G,
    4. Zembko P,
    5. Radzikowska U,
    6. Singh P, et al.
    Involvement of BAFF and APRIL in resistance to apoptosis of acute myeloid leukemia. J Cancer 2016; 7: 1979.
    OpenUrl
  38. 38.↵
    1. Warakomska M,
    2. Tynecka M,
    3. Lemancewicz D,
    4. Grubczak K,
    5. Dzieciol J,
    6. Moniuszko M, et al.
    The effects of BAFF and APRIL signaling on non‑small cell lung cancer cell proliferation and invasiveness. Oncol Lett 2021; 22: 1-8.
    OpenUrl
  39. 39.↵
    1. Vicent S,
    2. Lopez-Picazo JM,
    3. Toledo G,
    4. Lozano MD,
    5. Torre W,
    6. Garcia-Corchon C, et al.
    ERK1/2 is activated in non-small-cell lung cancer and associated with advanced tumours. Br J Cancer 2004; 90:1047-52.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.
    1. Wang H,
    2. Wu C,
    3. Wan S,
    4. Zhang H,
    5. Zhou S,
    6. Liu G.
    Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway. Toxicology 2013; 308: 104-112.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Wang M,
    2. Liu ZM,
    3. Li XC,
    4. Yao YT,
    5. Yin ZX.
    Activation of ERK1/2 and Akt is associated with cisplatin resistance in human lung cancer cells. J Chemother 2013; 25: 162-169.
    OpenUrl
  42. 42.↵
    1. Dou H,
    2. Yan Z,
    3. Zhang M,
    4. Xu X. APRIL
    , BCMA and TACI proteins are abnormally expressed in non-small cell lung cancer. Oncol Lett 2016; 12: 3351-3355.
    OpenUrl
  43. 43.↵
    1. Dou H,
    2. Yan Z,
    3. Zhang M,
    4. Xu X.
    APRIL promotes non-small cell lung cancer growth and metastasis by targeting ERK1/2 signaling. Oncotarget 2017; 8: 109289-109300.
    OpenUrl
  44. 44.↵
    1. Rezayatmand H,
    2. Razmkhah M,
    3. Razeghian-Jahromi I.
    Drug resistance in cancer therapy: the Pandora’s Box of cancer stem cells. Stem Cell Res Ther 2022; 13: 181.
    OpenUrlCrossRef
  45. 45.↵
    1. Liu H-S,
    2. Tan W-B,
    3. Yang N,
    4. Yang Y-Y,
    5. Cheng P,
    6. Liu L-J, et al.
    Effects of ribosomal protein l39-L on the drug resistance mechanisms of lung cancer A549 cells. Asian Pac J Cancer Prev 2014; 15: 3093-3097.
    OpenUrl
  46. 46.↵
    1. Coussens LM,
    2. Werb Z.
    Inflammation and cancer. Nature 2002; 420: 860-867.
    OpenUrlCrossRefPubMedWeb of Science
  47. 47.↵
    1. Dougan M,
    2. Dougan SK.
    Targeting immunotherapy to the tumor microenvironment. J Cell Biochem 2017; 118: 3049-3054.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Samy E,
    2. Wax S,
    3. Huard B,
    4. Hess H,
    5. Schneider P.
    Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. Int Rev Immunol 2017; 36: 3-19.
    OpenUrlCrossRef
  49. 49.↵
    1. He B,
    2. Chadburn A,
    3. Jou E,
    4. Schattner EJ,
    5. Knowles DM,
    6. Cerutti A.
    Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol 2004; 172: 3268-3279.
    OpenUrlAbstract/FREE Full Text
  50. 50.↵
    1. Jackson SW,
    2. Davidson A.
    BAFF inhibition in SLE—Is tolerance restored? Immunol Rev 2019; 292: 102-119.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Katsenelson N,
    2. Kanswal S,
    3. Puig M,
    4. Mostowski H,
    5. Verthelyi D,
    6. Akkoyunlu M.
    Synthetic CpG oligodeoxynucleotides augment BAFF‐and APRIL‐mediated immunoglobulin secretion. Eur J Immunoly 2007; 37: 1785-1795.
    OpenUrl
  52. 52.↵
    1. Matsushita T,
    2. Fujimoto M,
    3. Echigo T,
    4. Matsushita Y,
    5. Shimada Y,
    6. Hasegawa M, et al.
    Elevated serum levels of APRIL, but not BAFF, in patients with atopic dermatitis. Exp Dermatol 2008; 17: 197-202.
    OpenUrlPubMed
  53. 53.↵
    1. Liu K,
    2. Zhang Y,
    3. Hu S,
    4. Yu Y,
    5. Yang Q,
    6. Jin D, et al.
    Increased levels of BAFF and APRIL related to human active pulmonary tuberculosis. PloS one 2012; 7: e38429.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 45 (3)
Saudi Medical Journal
Vol. 45, Issue 3
1 Mar 2024
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Immunomodulatory effects of BAFF and APRIL cytokines in post-pulmonary infection lung cancer
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Immunomodulatory effects of BAFF and APRIL cytokines in post-pulmonary infection lung cancer
Wael Alturaiki
Saudi Medical Journal Mar 2024, 45 (3) 223-229; DOI: 10.15537/smj.2024.45.3.20230873

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Immunomodulatory effects of BAFF and APRIL cytokines in post-pulmonary infection lung cancer
Wael Alturaiki
Saudi Medical Journal Mar 2024, 45 (3) 223-229; DOI: 10.15537/smj.2024.45.3.20230873
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • BAFF
  • APRIL
  • lung cancer
  • pulmonary infection

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire