Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia

Suliman A. Alsagaby and Fahad A. Alhumaydhi
Saudi Medical Journal April 2019, 40 (4) 317-327; DOI: https://doi.org/10.15537/smj.2019.4.23598
Suliman A. Alsagaby
From the Department of Medical Laboratories Sciences (Alsagaby), Faculty of Applied Medical Sciences, Majmaah University, Majmaah, and from the Department of Medical Laboratories (Alhumaydhi), College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
Fahad A. Alhumaydhi
From the Department of Medical Laboratories Sciences (Alsagaby), Faculty of Applied Medical Sciences, Majmaah University, Majmaah, and from the Department of Medical Laboratories (Alhumaydhi), College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Kipps TJ,
    2. Stevenson FK,
    3. Wu CJ,
    4. Croce CM,
    5. Packham G,
    6. Wierda WG,
    7. et al.
    (2017) Chronic lymphocytic leukaemia. Nat Rev Dis Primers 3:16096.
    OpenUrl
  2. ↵
    1. Fabbri G,
    2. Dalla-Favera R
    (2016) The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer 16:145–162.
    OpenUrlCrossRef
  3. ↵
    1. Montserrat E
    (2017) Prognostic and Predictive Markers in CLL. Clin Lymphoma Myeloma Leuk 17:S197–S200.
    OpenUrl
  4. ↵
    1. Alsagaby SA,
    2. Brennan P,
    3. Pepper C
    (2016) Key Molecular Drivers of Chronic Lymphocytic Leukemia. Clin Lymphoma Myeloma Leuk 16:593–606.
    OpenUrl
  5. ↵
    1. Damle RN,
    2. Wasil T,
    3. Fais F,
    4. Ghiotto F,
    5. Valetto A,
    6. Allen SL,
    7. et al.
    (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Dürig J,
    2. Naschar M,
    3. Schmücker U,
    4. Renzing-Köhler K,
    5. Hölter T,
    6. Hüttmann A,
    7. et al.
    (2002) CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia 16:30–35.
    OpenUrlCrossRefPubMedWeb of Science
    1. Rassenti LZ,
    2. Jain S,
    3. Keating MJ,
    4. Wierda WG,
    5. Grever MR,
    6. Byrd JC,
    7. et al.
    (2008) Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood 112:1923–1930.
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Majid A,
    2. Lin TT,
    3. Best G,
    4. Fishlock K,
    5. Hewamana S,
    6. Pratt G,
    7. et al.
    (2011) CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL. Leuk Res 35:750–756.
    OpenUrlCrossRefPubMed
  8. ↵
    1. Döhner H,
    2. Stilgenbauer S,
    3. Benner A,
    4. Leupolt E,
    5. Kröber A,
    6. Bullinger L,
    7. et al.
    (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916.
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Shustik C,
    2. Bence-Bruckler I,
    3. Delage R,
    4. Owen CJ,
    5. Toze CL,
    6. Coutre S
    (2017) Advances in the treatment of relapsed/refractory chronic lymphocytic leukemia. Ann Hematol 96:1185–1196.
    OpenUrl
  10. ↵
    1. Larance M,
    2. Lamond AI
    (2015) Multidimensional proteomics for cell biology. Nat Rev Mol Cell Biol 16:269–281.
    OpenUrlCrossRefPubMed
  11. ↵
    1. Tyers M,
    2. Mann M
    (2003) From genomics to proteomics. Nature 422:193–197.
    OpenUrlCrossRefPubMedWeb of Science
  12. ↵
    1. Díez P,
    2. Góngora R,
    3. Orfao A,
    4. Fuentes M
    (2017) Functional proteomic insights in B-cell chronic lymphocytic leukemia. Expert Rev Proteomics 14:137–146.
    OpenUrl
  13. ↵
    1. Cochran DAE,
    2. Evans CA,
    3. Blinco D,
    4. Burthem J,
    5. Stevenson FK,
    6. Gaskell SJ,
    7. et al.
    (2003) Proteomic analysis of chronic lymphocytic leukemia subtypes with mutated or unmutated Ig VH genes. Mol Cell Proteomics 2:1331–1341.
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Boelens J,
    2. Vanden Berghe W,
    3. Haegeman G,
    4. Janssens A,
    5. Philippé J,
    6. et al.
    (2005) Baseline nucleophosmin status in mutated (M) versus unmutated (U) immunoglobulin B-CLL is a nuclear reflection of different signal transduction physiology. Annals of Oncology 106:5005–5005.
    OpenUrl
  15. ↵
    1. Colombo E,
    2. Marine J-C,
    3. Danovi D,
    4. Falini B,
    5. Pelicci PG
    (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529.
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Zenz T,
    2. Kröber A,
    3. Scherer K,
    4. Häbe S,
    5. Bühler A,
    6. Benner A,
    7. et al.
    (2008) Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia:results from a detailed genetic characterization with long-term follow-up. Blood 112:3322–3329.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Barnidge DR,
    2. Jelinek DF,
    3. Muddiman DC,
    4. Kay NE
    (2005) Quantitative protein expression analysis of CLL B cells from mutated and unmutated IgVH subgroups using acid-cleavable isotope-coded affinity tag reagents. J Proteome Res 4:1310–1317.
    OpenUrlCrossRefPubMed
  18. ↵
    1. Lascorz J,
    2. Bevier M,
    3. Schönfels WV,
    4. Kalthoff H,
    5. Aselmann H,
    6. Beckmann J,
    7. et al.
    (2012) Polymorphisms in the mitochondrial oxidative phosphorylation chain genes as prognostic markers for colorectal cancer. BMC Med Genet 13:31–38.
    OpenUrlPubMed
  19. ↵
    1. Mayevsky A
    (2009) Mitochondrial function and energy metabolism in cancer cells:past overview and future perspectives. Mitochondrion 9:165–179.
    OpenUrlCrossRefPubMed
  20. ↵
    1. Eagle GL,
    2. Zhuang J,
    3. Jenkins RE,
    4. Till KJ,
    5. Jithesh PV,
    6. Lin K,
    7. et al.
    (2015) Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia. Mol Cell Proteomics 14:933–945.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Calderwood DA
    (2004) Integrin activation. J Cell Sci 117:657–666.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Kinashi T,
    2. Katagiri K
    (2004) Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule, RAPL. Immunol Lett 93:1–5.
    OpenUrlCrossRefPubMedWeb of Science
  23. ↵
    1. Till KJ,
    2. Harris RJ,
    3. Linford A,
    4. Spiller DG,
    5. Zuzel M,
    6. Cawley JC
    (2008) Cell motility in chronic lymphocytic leukemia:defective Rap1 and aLb2 activation by chemokine. Cancer Res 68:8429–8436.
    OpenUrlAbstract/FREE Full Text
    1. Gattei V,
    2. Bulian P,
    3. Del Principe MI,
    4. Zucchetto A,
    5. Maurillo L,
    6. Buccisano F,
    7. et al.
    (2008) Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 111:865–873.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Burger JA,
    2. Gribben JG
    (2014) The microenvironment in chronic lymphocytic leukemia (CLL) and other B cell malignancies:insight into disease biology and new targeted therapies. Semin Cancer Biol 24:71–81.
    OpenUrlCrossRefPubMed
  25. ↵
    1. Girbl T,
    2. Hinterseer E,
    3. Melanie Grössinger E,
    4. Asslaber D,
    5. Oberascher K,
    6. Weiss L,
    7. et al.
    (2013) CD40-mediated activation of chronic lymphocytic leukemia cells promotes their CD44-dependent adhesion to hyaluronan and restricts CCL21-induced motility. Cancer Res 73:561–570.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Fedorchenko O,
    2. Stiefelhagen M,
    3. Peer-Zada AA,
    4. Barthel R,
    5. Mayer P,
    6. Eckei L,
    7. et al.
    (2013) CD44 regulates the apoptotic response and promotes disease development in chronic lymphocytic leukemia. Blood 121:4126–4136.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Díez P,
    2. Ibarrola N,
    3. Dégano RM,
    4. Lécrevisse Q,
    5. Rodriguez-Caballero A,
    6. Criado I,
    7. et al.
    (2017) A systematic approach for peptide characterization of B-cell receptor in chronic lymphocytic leukemia cells. Oncotarget 8:42836–42846.
    OpenUrl
  28. ↵
    1. Robak T,
    2. Robak P
    (2013) BCR signaling in chronic lymphocytic leukemia and related inhibitors currently in clinical studies. Int Rev Immunol 32:358–376.
    OpenUrlCrossRefPubMed
  29. ↵
    1. Kashuba E,
    2. Eagle GL,
    3. Bailey J,
    4. Evans P,
    5. Welham KJ,
    6. Allsup D,
    7. et al.
    (2013) Proteomic analysis of B-cell receptor signaling in chronic lymphocytic leukaemia reveals a possible role for kininogen. J Proteomics 91:478–485.
    OpenUrl
  30. ↵
    1. Campbell DJ
    (2001) The kallikrein–kinin system in humans. Clin Exp Pharmacol Physiol 28:1060–1065.
    OpenUrlCrossRefPubMed
  31. ↵
    1. Adamopoulos PG,
    2. Kontos CK,
    3. Papageorgiou SG,
    4. Pappa V,
    5. Scorilas A
    (2015) KLKB1 mRNA overexpression:A novel molecular biomarker for the diagnosis of chronic lymphocytic leukemia. Clin Biochem 13:849–854.
    OpenUrl
  32. ↵
    1. Guarini A,
    2. Chiaretti S,
    3. Tavolaro S,
    4. Maggio R,
    5. Peragine N,
    6. Citarella F,
    7. et al.
    (2008) BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgVH unmutated chronic lymphocytic leukemia (CLL) cells. Blood 112:782–792.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Perrot A,
    2. Pionneau C,
    3. Nadaud S,
    4. Davi F,
    5. Leblond V,
    6. Jacob F,
    7. et al.
    (2011) A unique proteomic profile upon surface IgM ligation in unmutated chronic lymphocytic leukemia. Blood 118:e1–e15.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Lankat Buttgereit B,
    2. Göke R
    (2009) The tumour suppressor Pdcd4:recent advances in the elucidation of function and regulation. Biol Cell 101:309–317.
    OpenUrlCrossRefPubMedWeb of Science
  35. ↵
    1. Brignone C,
    2. Bradley KE,
    3. Kisselev AF,
    4. Grossman SR
    (2004) A post-ubiquitination role for MDM2 and hHR23A in the p53 degradation pathway. Oncogene 23:4121.
    OpenUrlCrossRefPubMedWeb of Science
  36. ↵
    1. Yeomans A,
    2. Thirdborough SM,
    3. Valle-Argos B,
    4. Linley A,
    5. Krysov S,
    6. Hidalgo MS,
    7. et al.
    (2016) Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation. Blood 127:449–457.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Jeon H-K,
    2. Ahn J-H,
    3. Choe J,
    4. Park JH,
    5. Lee TH
    (2005) Anti-IgM induces up-regulation and tyrosine-phosphorylation of heterogeneous nuclear ribonucleoprotein K proteins (hnRNP K) in a Ramos B cell line. Immunol Lett 98:303–310.
    OpenUrlCrossRefPubMedWeb of Science
    1. Gallardo M,
    2. Zhang X,
    3. McArthur M,
    4. Manshouri T,
    5. Post SM
    (2015) Amplification of hnRNP K Drives c-Myc-dependent malignancies and represent a novel therapeutic opportunity for hematologic malignancies. Blood 126:468.
    OpenUrl
  38. ↵
    1. Gallardo M,
    2. Lee HJ,
    3. Zhang X,
    4. Pageon LR,
    5. Multani A,
    6. Reschke M,
    7. et al.
    (2014) hnRNP K overexpression synergizes with mutant NPM1 to drive acute myeloid leukemia progression. Blood 21:2382–2382.
    OpenUrl
  39. ↵
    1. Carballo E,
    2. Colomer D,
    3. Vives-Corrons JL,
    4. Blackshear PJ,
    5. Gil J
    (1996) Characterization and purification of a protein kinase C substrate in human B cells. Identification as lymphocyte-specific protein 1 (LSP1). J Immunol 156:1709–1713.
    OpenUrlAbstract
  40. ↵
    1. Alkan S,
    2. Huang Q,
    3. Ergin M,
    4. Denning MF,
    5. Nand S,
    6. Maududi T,
    7. et al.
    (2005) Survival role of protein kinase C (PKC) in chronic lymphocytic leukemia and determination of isoform expression pattern and genes altered by PKC inhibition. Am J Hematol 79:97–106.
    OpenUrlCrossRefPubMed
  41. ↵
    1. Rossi D,
    2. Rasi S,
    3. Fabbri G,
    4. Spina V,
    5. Fangazio M,
    6. Forconi F,
    7. et al.
    (2012) Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 119:521–529.
    OpenUrlAbstract/FREE Full Text
    1. Del Giudice I,
    2. Rossi D,
    3. Chiaretti S,
    4. Marinelli M,
    5. Tavolaro S,
    6. Gabrielli S,
    7. et al.
    (2012) NOTCH1 mutations in+12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of+12 CLL. Haematologica 97:437–441.
    OpenUrlAbstract/FREE Full Text
  42. ↵
    1. Mansouri L,
    2. Cahill N,
    3. Gunnarsson R,
    4. Smedby KE,
    5. Tjönnfjord E,
    6. Hjalgrim H,
    7. et al.
    (2013) NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia 27:512–514.
    OpenUrlCrossRefPubMedWeb of Science
  43. ↵
    1. Arruga F,
    2. Gizdic B,
    3. Serra S,
    4. Vaisitti T,
    5. Ciardullo C,
    6. Coscia M,
    7. et al.
    (2014) functional impact of Notch1 mutations in chronic lymphocytic leukemia. Leukemia 28:1060–1070.
    OpenUrlCrossRefPubMedWeb of Science
  44. ↵
    1. Díez P,
    2. Lorenzo S,
    3. Dégano RM,
    4. Ibarrola N,
    5. González-González M,
    6. Nieto W,
    7. et al.
    (2016) Multipronged functional proteomics approaches for global identification of altered cell signalling pathways in B-cell chronic lymphocytic leukaemia. Proteomics 16:1193–1203.
    OpenUrl
  45. ↵
    1. Smucker EJ,
    2. Turchi JJ
    (2001) TRF1 inhibits telomere C-strand DNA synthesis in vitro. Biochemistry 40:2426–2432.
    OpenUrl
  46. ↵
    1. Kishi S,
    2. Wulf G,
    3. Nakamura M,
    4. Lu KP
    (2001) Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors. Oncogene 20:1497–1508.
    OpenUrlCrossRefPubMedWeb of Science
  47. ↵
    1. Zhou Y,
    2. Zhong Y,
    3. Wang Y,
    4. Zhang X,
    5. Batista DL,
    6. Gejman R,
    7. et al.
    (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742.
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Watari A,
    2. Li Y,
    3. Higashiyama S,
    4. Yutsudo M
    (2012) A novel proapoptotic gene PANO encodes a post-translational modulator of the tumor suppressor p14ARF. Exp Cell Res 318:187–195.
    OpenUrlPubMed
  49. ↵
    1. Kruiswijk F,
    2. Labuschagne CF,
    3. Vousden KH
    (2015) p53 in survival, death and metabolic health:a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16:393–405.
    OpenUrlCrossRefPubMed
  50. ↵
    1. Johnston HE,
    2. Carter MJ,
    3. Larrayoz M,
    4. Clarke J,
    5. Garbis SD,
    6. Oscier D,
    7. et al.
    (2018) Proteomics profiling of CLL versus healthy B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation. Mol Cell Proteomics 17:776–791.
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Rossi D
    (2011) Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia:association with progression and fludarabine-refractoriness. Blood 118:6904–6908.
    OpenUrlAbstract/FREE Full Text
  52. ↵
    1. Kulis M,
    2. Heath S,
    3. Bibikova M,
    4. Queirós AC,
    5. Navarro A,
    6. Clot G,
    7. et al.
    (2012) Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 44:1236–1242.
    OpenUrlCrossRefPubMed
  53. ↵
    1. Castro JE,
    2. Prada CE,
    3. Loria O,
    4. Kamal A,
    5. Chen L,
    6. Burrows FJ,
    7. et al.
    (2005) ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client:inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 106:2506–2512.
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Miguet L,
    2. Béchade G,
    3. Fornecker L,
    4. Zink E,
    5. Felden C,
    6. Gervais C,
    7. et al.
    (2009) Proteomic analysis of malignant B-cell derived microparticles reveals CD148 as a potentially useful antigenic biomarker for mantle cell lymphoma diagnosis. J Proteome Res 8:3346–3354.
    OpenUrlCrossRefPubMedWeb of Science
  55. ↵
    1. Fan L,
    2. Miao Y,
    3. Wu Y-J,
    4. Wang Y,
    5. Guo R,
    6. Wang L,
    7. et al.
    (2015) Expression patterns of CD200 and CD148 in leukemic B-cell chronic lymphoproliferative disorders and their potential value in differential diagnosis. Leuk Lymphoma 56:3329–3335.
    OpenUrl
  56. ↵
    1. Boyd RS,
    2. Adam PJ,
    3. Patel S,
    4. Loader JA,
    5. Berry J,
    6. Redpath NT,
    7. et al.
    (2003) Proteomic analysis of the cell-surface membrane in chronic lymphocytic leukemia:identification of two novel proteins, BCNP1 and MIG2B. Leukemia 17:1605–1612.
    OpenUrlCrossRefPubMedWeb of Science
  57. ↵
    1. Svensson L,
    2. Howarth K,
    3. McDowall A,
    4. Patzak I,
    5. Evans R,
    6. Ussar S,
    7. et al.
    (2009) Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15:306–312.
    OpenUrlCrossRefPubMedWeb of Science
  58. ↵
    1. Paiva B,
    2. Corchete LA,
    3. Vidriales M-B,
    4. Puig N,
    5. Maiso P,
    6. Rodriguez I,
    7. et al.
    (2016) Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells:a new model to understand chemoresistance. Blood 127:1896–1906.
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Patel SJ,
    2. Trivedi GL,
    3. Darie CC,
    4. Clarkson BD
    (2017) The possible roles of B-cell novel protein-1 (BCNP-1) in cellular signalling pathways and in cancer. J Cell Mol Med 21:456–466.
    OpenUrl
  60. ↵
    1. Chen C,
    2. Puvvada S
    (2016) Prognostic Factors for Chronic Lymphocytic Leukemia. Curr Hematol Malig Rep 11:37–42.
    OpenUrl
  61. ↵
    1. Voss T,
    2. Ahorn H,
    3. Haberl P,
    4. Döhner H,
    5. Wilgenbus K
    (2001) Correlation of clinical data with proteomics profiles in 24 patients with B-cell chronic lymphocytic leukemia. Int J Cancer 91:180–186.
    OpenUrlCrossRefPubMed
  62. ↵
    1. Tew KD
    (2016) Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 76:7–9.
    OpenUrlFREE Full Text
    1. Zhang P,
    2. Liu B,
    3. Seo MS,
    4. Rhee SG,
    5. Obeid LM
    (1997) Thioredoxin peroxidase is a novel inhibitor of apoptosis with a mechanism distinct from that of Bcl-2. J Biol Chem 272:30615–30618.
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Täger M,
    2. Kröning H,
    3. Thiel U,
    4. Ansorge S
    (1997) Membrane-bound proteindisulfide isomerase (PDI) is involved in regulation of surface expression of thiols and drug sensitivity of B-CLL cells. Exp Hematol 25:601–607.
    OpenUrlPubMed
  64. ↵
    1. Bhattacharyya S,
    2. Dudeja PK,
    3. Tobacman JK
    (2008) ROS, Hsp27, and IKKb mediate dextran sodium sulfate (DSS) activation of IkBa, NFkB, and IL-8. Inflamm Bowel Dis 15:673–683.
    OpenUrl
  65. ↵
    1. Arrigo AP
    (1998) Small stress proteins:chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379:19–26.
    OpenUrlPubMedWeb of Science
  66. ↵
    1. Alsagaby S,
    2. Brewis I,
    3. Pepper C,
    4. Fegan C,
    5. Brennan P
    (2010) Analysis of human B-cells with quantitative and sub-cellular proteomics. Immunology 131:115.
    OpenUrl
  67. ↵
    1. Alsagaby SA,
    2. Khanna S,
    3. Hart KW,
    4. Pratt G,
    5. Fegan C,
    6. Pepper C,
    7. et al.
    (2014) Proteomics-based strategies to identify proteins relevant to chronic lymphocytic leukemia. J Proteome Res 13:5051–5062.
    OpenUrlCrossRefPubMed
  68. ↵
    1. Pepper C,
    2. Hewamana S,
    3. Brennan P,
    4. Fegan C
    (2009) NF-kB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncology 5:1027–1037.
    OpenUrl
  69. ↵
    1. Billard C
    (2014) Apoptosis inducers in chronic lymphocytic leukemia. Oncotarget 5:309.
    OpenUrlCrossRefPubMed
  70. ↵
    1. Bichi R,
    2. Shinton SA,
    3. Martin ES,
    4. Koval A,
    5. Calin GA,
    6. Cesari R,
    7. et al.
    (2002) Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 99:6955–6960.
    OpenUrlAbstract/FREE Full Text
    1. Gaudio E,
    2. Spizzo R,
    3. Paduano F,
    4. Luo Z,
    5. Efanov A,
    6. Palamarchuk A,
    7. et al.
    (2012) Tcl1 interacts with Atm and enhances NF-kB activation in hematologic malignancies. Blood 119:180–187.
    OpenUrlAbstract/FREE Full Text
  71. ↵
    1. Herling M,
    2. Patel KA,
    3. Weit N,
    4. Lilienthal N,
    5. Hallek M,
    6. Keating MJ,
    7. et al.
    (2009) High TCL1 levels are a marker of B-cell receptor pathway responsiveness and adverse outcome in chronic lymphocytic leukemia. Blood 114:4675–4686.
    OpenUrlAbstract/FREE Full Text
  72. ↵
    1. Cross SS,
    2. Hamdy FC,
    3. Deloulme JC,
    4. Rehman I
    (2005) Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays:S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 46:256–269.
    OpenUrlCrossRefPubMedWeb of Science
  73. ↵
    1. Hermani A,
    2. De Servi B,
    3. Medunjanin S,
    4. Tessier PA,
    5. Mayer D
    (2006) S100A8 and S100A9 activate MAP kinase and NF-kB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 312:184–197.
    OpenUrlCrossRefPubMedWeb of Science
  74. ↵
    1. Bracken CP,
    2. Wall SJ,
    3. Barré B,
    4. Panov KI,
    5. Ajuh PM,
    6. Perkins ND
    (2008) Regulation of cyclin D1 RNA stability by SNIP1. Cancer Res 68:7621–7628.
    OpenUrlAbstract/FREE Full Text
  75. ↵
    1. Abboudi Z,
    2. Patel K,
    3. Naresh KN
    (2009) Cyclin D1 expression in typical chronic lymphocytic leukaemia. Eur J Haematol 83:203–207.
    OpenUrlCrossRefPubMed
  76. ↵
    1. Jacobelli J,
    2. Friedman RS,
    3. Conti MA,
    4. Lennon-Dumenil A-M,
    5. Piel M,
    6. Sorensen CM,
    7. et al.
    (2010) Confinement-optimized three-dimensional T cell amoeboid motility is modulated via myosin IIA–regulated adhesions. Nat Immunol 11:953–961.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 40 (4)
Saudi Medical Journal
Vol. 40, Issue 4
1 Apr 2019
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia
Suliman A. Alsagaby, Fahad A. Alhumaydhi
Saudi Medical Journal Apr 2019, 40 (4) 317-327; DOI: 10.15537/smj.2019.4.23598

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Proteomics insights into the pathology and prognosis of chronic lymphocytic leukemia
Suliman A. Alsagaby, Fahad A. Alhumaydhi
Saudi Medical Journal Apr 2019, 40 (4) 317-327; DOI: 10.15537/smj.2019.4.23598
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire