Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Systematic ReviewSystematic Review
Open Access

The diagnostic accuracy of RT-PCR from self-collected saliva versus nasopharyngeal sampling

A systematic review and meta-analysis

Do Hyun Kim, Mohammed A. Basurrah, Jae Hong Han, Sung Won Kim and Se Hwan Hwang
Saudi Medical Journal January 2022, 43 (1) 9-30; DOI: https://doi.org/10.15537/smj.2022.43.1.20210743
Do Hyun Kim
From the Department of Otolaryngology-Head and Neck Surgery (DH. Kim, Han, SW. Kim), Seoul Saint Mary’s Hospital; from the Department of Otolaryngology-Head and Neck Surgery (Hwang), Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, and from the Department of Surgery (Basurrah), College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia.
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohammed A. Basurrah
From the Department of Otolaryngology-Head and Neck Surgery (DH. Kim, Han, SW. Kim), Seoul Saint Mary’s Hospital; from the Department of Otolaryngology-Head and Neck Surgery (Hwang), Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, and from the Department of Surgery (Basurrah), College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia.
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jae Hong Han
From the Department of Otolaryngology-Head and Neck Surgery (DH. Kim, Han, SW. Kim), Seoul Saint Mary’s Hospital; from the Department of Otolaryngology-Head and Neck Surgery (Hwang), Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, and from the Department of Surgery (Basurrah), College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia.
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sung Won Kim
From the Department of Otolaryngology-Head and Neck Surgery (DH. Kim, Han, SW. Kim), Seoul Saint Mary’s Hospital; from the Department of Otolaryngology-Head and Neck Surgery (Hwang), Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, and from the Department of Surgery (Basurrah), College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia.
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Se Hwan Hwang
From the Department of Otolaryngology-Head and Neck Surgery (DH. Kim, Han, SW. Kim), Seoul Saint Mary’s Hospital; from the Department of Otolaryngology-Head and Neck Surgery (Hwang), Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, and from the Department of Surgery (Basurrah), College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia.
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Joffily L,
    2. Ungierowicz A,
    3. David AG,
    4. Melo B,
    5. Brito CLT,
    6. Mello L, et al.
    The close relationship between sudden loss of smell and COVID-19. Braz J Otorhinolaryngol 2020; 86: 632–638.
    OpenUrl
  2. 2.↵
    1. Zayet S,
    2. Klopfenstein T,
    3. Mercier J,
    4. Kadiane-Oussou NJ,
    5. Lan Cheong Wah L,
    6. Royer PY, et al.
    Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. Infection 2021; 49: 361–365.
    OpenUrl
  3. 3.↵
    1. Yan CH,
    2. Faraji F,
    3. Prajapati DP,
    4. Boone CE,
    5. DeConde AS.
    Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol 2020; 10: 806–813.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Kang SJ,
    2. Jung SI.
    Age-related morbidity and mortality among patients with COVID-19. Infect Chemother 2020; 52: 154–164.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Liu M,
    2. Li Q,
    3. Zhou J,
    4. Ai W,
    5. Zheng X,
    6. Zeng J, et al.
    Value of swab types and collection time on SARS-COV-2 detection using RT-PCR assay. J Virol Methods 2020; 286: 113974.
    OpenUrl
  6. 6.↵
    1. Mohammadi A,
    2. Esmaeilzadeh E,
    3. Li Y,
    4. Bosch RJ,
    5. Li JZ.
    SARS-CoV-2 detection in different respiratory sites: a systematic review and meta-analysis. EBioMedicine 2020; 59: 102903.
    OpenUrl
  7. 7.↵
    1. Pasomsub E,
    2. Watcharananan SP,
    3. Boonyawat K,
    4. Janchompoo P,
    5. Wongtabtim G,
    6. Suksuwan W, et al.
    Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. Clin Microbiol Infect 2021; 27: 285.
    OpenUrl
  8. 8.↵
    1. Yokota I,
    2. Shane PY,
    3. Okada K,
    4. Unoki Y,
    5. Yang Y,
    6. Inao T, et al.
    Mass screening of asymptomatic persons for severe acute respiratory syndrome coronavirus 2 using saliva. Clin Infect Dis 2021; 73: e559–e565.
    OpenUrl
  9. 9.↵
    1. Czumbel LM,
    2. Kiss S,
    3. Farkas N,
    4. Mandel I,
    5. Hegyi A,
    6. Nagy Á, et al.
    Saliva as a candidate for COVID-19 diagnostic testing: a meta-analysis. Front Med (Lausanne) 2020; 7: 465.
    OpenUrl
  10. 10.↵
    1. Williams E,
    2. Bond K,
    3. Zhang B,
    4. Putland M,
    5. Williamson DA.
    Saliva as a noninvasive specimen for detection of SARS-CoV-2. J Clin Microbiol 2020; 58: e00776–e00720.
    OpenUrlPubMed
  11. 11.
    1. Skolimowska K,
    2. Rayment M,
    3. Jones R,
    4. Madona P,
    5. Moore LSP,
    6. Randell P.
    Non-invasive saliva specimens for the diagnosis of COVID-19: caution in mild outpatient cohorts with low prevalence. Clin Microbiol Infect 2020; 26: 1711–1713.
    OpenUrl
  12. 12.
    1. Moreno-Contreras J,
    2. Espinoza MA,
    3. Sandoval-Jaime C,
    4. Cantú-Cuevas MA,
    5. Barón-Olivares H,
    6. Ortiz-Orozco OD, et al.
    Saliva sampling and its direct lysis, an excellent option to increase the number of SARS-CoV-2 diagnostic tests in settings with supply shortages. J Clin Microbiol 2020; 58: e01659–e01620.
    OpenUrl
  13. 13.
    1. Landry ML,
    2. Criscuolo J,
    3. Peaper DR.
    Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. J Clin Virol 2020; 130: 104567.
    OpenUrlCrossRefPubMed
  14. 14.
    1. Hanson KE,
    2. Barker AP,
    3. Hillyard DR,
    4. Gilmore N,
    5. Barrett JW,
    6. Orlandi RR, et al.
    Self-collected anterior nasal and saliva specimens versus health care worker-collected nasopharyngeal swabs for the molecular detection of SARS-CoV-2. J Clin Microbiol 2020; 58: e01824–e01820.
    OpenUrl
  15. 15.↵
    1. Procop GW,
    2. Shrestha NK,
    3. Vogel S,
    4. Van Sickle K,
    5. Harrington S,
    6. Rhoads DD, et al.
    A direct comparison of enhanced saliva to nasopharyngeal swab for the detection of SARS-CoV-2 in symptomatic patients. J Clin Microbiol 2020; 58: e01946–e01920.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Vaz SN,
    2. Santana DS,
    3. Netto EM,
    4. Pedroso C,
    5. Wang WK,
    6. Santos FDA, et al.
    Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. Braz J Infect Dis 2020; 24: 422–427.
    OpenUrl
  17. 17.
    1. Güçlü E,
    2. Koroglu M,
    3. Yürümez Y,
    4. Toptan H,
    5. Kose E,
    6. Güneysu F, et al.
    Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. Rev Assoc Med Bras (1992) 2020; 66: 1116–1121.
    OpenUrl
  18. 18.
    1. Altawalah H,
    2. AlHuraish F,
    3. Alkandari WA,
    4. Ezzikouri S.
    Saliva specimens for detection of severe acute respiratory syndrome coronavirus 2 in Kuwait: a cross-sectional study. J Clin Virol 2020; 132: 104652.
    OpenUrlCrossRef
  19. 19.↵
    1. Griesemer SB,
    2. Van Slyke G,
    3. Ehrbar D,
    4. Strle K,
    5. Yildirim T,
    6. Centurioni DA, et al.
    Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing. J Clin Microbiol 2021; 59: e01418–e01420.
    OpenUrl
  20. 20.
    1. Caulley L,
    2. Corsten M,
    3. Eapen L,
    4. Whelan J,
    5. Angel JB,
    6. Antonation K, et al.
    Salivary detection of COVID-19. Ann Intern Med 2021; 174: 131–133.
    OpenUrl
  21. 21.
    1. Senok A,
    2. Alsuwaidi H,
    3. Atrah Y,
    4. Al Ayedi O,
    5. Al Zahid J,
    6. Han A, et al.
    Saliva as an alternative specimen for molecular COVID-19 testing in community settings and population-based screening. Infect Drug Resist 2020; 13: 3393–3399.
    OpenUrlCrossRefPubMed
  22. 22.
    1. Babady NE,
    2. McMillen T,
    3. Jani K,
    4. Viale A,
    5. Robilotti EV,
    6. Aslam A, et al.
    Performance of severe acute respiratory syndrome coronavirus 2 real-time RT-PCR tests on oral rinses and saliva samples. J Mol Diagn 2021; 23: 3–9.
    OpenUrlCrossRef
  23. 23.
    1. Kandel C,
    2. Zheng J,
    3. McCready J,
    4. Serbanescu MA,
    5. Racher H,
    6. Desaulnier M, et al.
    Detection of SARS-CoV-2 from saliva as compared to nasopharyngeal swabs in outpatients. Viruses 2020; 12: 1314.
    OpenUrl
  24. 24.
    1. Braz-Silva PH,
    2. Mamana AC,
    3. Romano CM,
    4. Felix AC,
    5. de Paula AV,
    6. Fereira NE, et al.
    Performance of at-home self-collected saliva and nasal-oropharyngeal swabs in the surveillance of COVID-19. J Oral Microbiol 2020; 13: 1858002.
    OpenUrlCrossRef
  25. 25.↵
    1. Bhattacharya D,
    2. Parai D,
    3. Rout UK,
    4. Nanda RR,
    5. Kanungo S,
    6. Dash GC, et al.
    Saliva as a potential clinical specimen for diagnosis of SARS-CoV-2. MedRxiv 2020; 9: 20192591.
    OpenUrl
  26. 26.↵
    1. Byrne RL,
    2. Kay GA,
    3. Kontogianni K,
    4. Brown L,
    5. Collins AM,
    6. Cuevas LE, et al.
    Saliva offers a sensitive, specific and non-invasive alternative to upper respiratory swabs for SARS-CoV-2 diagnosis. medRxiv 2020; 9: 20149534.
    OpenUrl
  27. 27.
    1. Dogan OA,
    2. Kose B,
    3. Agaoglu NB,
    4. Yildiz J,
    5. Alkurt G,
    6. Demirkol YK, et al.
    Does sampling saliva increase detection of SARS-CoV-2 by RT-PCR? comparing saliva with oro-nasopharyngeal swabs. J Virol Methods 2021; 290: 114049.
    OpenUrl
  28. 28.
    1. Wong SCY,
    2. Tse H,
    3. Siu HK,
    4. Kwong TS,
    5. Chu MY,
    6. Yau FYS, et al.
    Posterior oropharyngeal saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71: 2939–2946.
    OpenUrlCrossRef
  29. 29.
    1. Iwasaki S,
    2. Fujisawa S,
    3. Nakakubo S,
    4. Kamada K,
    5. Yamashita Y,
    6. Fukumoto T, et al.
    Comparison of SARS-CoV-2 detection in nasopharyngeal swab and saliva. J Infect 2020; 81: e145–e147.
    OpenUrlPubMed
  30. 30.
    1. Kojima N,
    2. Turner F,
    3. Slepnev V,
    4. Bacelar A,
    5. Deming L,
    6. Kodeboyina S, et al.
    Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for coronavirus disease 2019 detection. Clin Infect Dis 2021; 73: e3106–e3109.
    OpenUrl
  31. 31.
    1. McCormick-Baw C,
    2. Morgan K,
    3. Gaffney D,
    4. Cazares Y,
    5. Jaworski K,
    6. Byrd A, et al.
    Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. J Clin Microbiol 2020; 58: e01109–e01120.
    OpenUrl
  32. 32.
    1. Miller M,
    2. Jansen M,
    3. Bisignano A,
    4. Mahoney S,
    5. Wechsberg C,
    6. Albanese N, et al.
    Validation of a self-administrable, saliva-based RT-qPCR test detecting SARS-CoV-2. MedRxiv 2020; 6: 20122721.
    OpenUrl
  33. 33.
    1. Vogels CBF,
    2. Watkins AE,
    3. Harden CA,
    4. Brackney DE,
    5. Shafer J,
    6. Wang J, et al.
    SalivaDirect: a simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med (NY) 2021; 2: 263–280.
    OpenUrl
  34. 34.
    1. Boerger AC,
    2. Buckwalter S,
    3. Fernholz EC,
    4. Jannetto PJ,
    5. Binnicker MJ,
    6. Reed K, et al.
    Evaluation of self-collected midturbinate nasal swabs and saliva for detection of SARS-CoV-2 RNA. J Clin Microbiol 2021; 59: e0084821.
    OpenUrl
  35. 35.
    1. Toppings NB,
    2. Mohon AN,
    3. Lee Y,
    4. Kumar H,
    5. Lee D,
    6. Kapoor R, et al.
    A rapid near-patient detection system for SARS-CoV-2 using saliva. Sci Rep 2021; 11: 13378.
    OpenUrl
  36. 36.
    1. Xun G,
    2. Lane ST,
    3. Petrov VA,
    4. Pepa BE,
    5. Zhao H.
    A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. Nat Commun 2021; 12: 2905.
    OpenUrl
  37. 37.
    1. Masse S,
    2. Bonnet C,
    3. Vilcu AM,
    4. Benamar H,
    5. Swital M,
    6. van der Werf S, et al.
    Are posterior oropharyngeal saliva specimens an acceptable alternative to nasopharyngeal sampling for the monitoring of SARS-CoV-2 in primary-care settings? Viruses 2021; 13: 761.
    OpenUrl
  38. 38.
    1. Sasikala M,
    2. Sadhana Y,
    3. Vijayasarathy K,
    4. Gupta A,
    5. Daram SK,
    6. Podduturi NCR, et al.
    Comparison of saliva with healthcare workers- and patient-collected swabs in the diagnosis of COVID-19 in a large cohort. BMC Infect Dis 2021; 21: 648.
    OpenUrl
  39. 39.
    1. Mohd Thabit AA,
    2. Peariasamy KM,
    3. Kuan PX,
    4. Fern Ying DK,
    5. Nheu N,
    6. Cyncynatus C, et al.
    Diagnostic accuracy of fresh drooled saliva for SARS-CoV-2 in travelers. Travel Med Infect Dis 2021; 43: 102144.
    OpenUrl
  40. 40.
    1. Fernandes PADC,
    2. Ferreira FADC,
    3. Morais OM,
    4. Ramos CMT,
    5. Fernandes ÉMR,
    6. Rocha SAAD, et al.
    Performance of saliva as a specimen to detect SARS-CoV-2. J Clin Virol 2021; 142: 104913.
    OpenUrl
  41. 41.
    1. Marx GE,
    2. Biggerstaff BJ,
    3. Nawrocki CC,
    4. Totten SE,
    5. Travanty EA,
    6. Burakoff AW, et al.
    Detection of severe acute respiratory syndrome coronavirus 2 on self-collected saliva or anterior nasal specimens compared with healthcare personnel-collected nasopharyngeal specimens. Clin Infect Dis 2021; 73: S65–S73.
    OpenUrlCrossRefPubMed
  42. 42.
    1. Abasiyanik MF,
    2. Flood B,
    3. Lin J,
    4. Ozcan S,
    5. Rouhani SJ,
    6. Pyzer A, et al.
    Sensitive detection and quantification of SARS-CoV-2 in saliva. Sci Rep 2021; 11: 12425.
    OpenUrl
  43. 43.
    1. Alkhateeb KJ,
    2. Cahill MN,
    3. Ross AS,
    4. Arnold FW,
    5. Snyder JW.
    The reliability of saliva for the detection of SARS-CoV-2 in symptomatic and asymptomatic patients: insights on the diagnostic performance and utility for COVID-19 screening. Diagn Microbiol Infect Dis 2021; 101: 115450.
    OpenUrl
  44. 44.
    1. Bidkar V,
    2. Mishra M,
    3. Gade N,
    4. Selvaraj K.
    Conventional naso-oropharyngeal sampling versus self-collected saliva samples in COVID-19 testing. Indian J Otolaryngol Head Neck Surg 2021: 1–7.
  45. 45.
    1. Stokes W,
    2. Berenger BM,
    3. Portnoy D,
    4. Scott B,
    5. Szelewicki J,
    6. Singh T, et al.
    Clinical performance of the Abbott Panbio with nasopharyngeal, throat, and saliva swabs among symptomatic individuals with COVID-19. Eur J Clin Microbiol Infect Dis 2021; 40: 1721–1726.
    OpenUrl
  46. 46.
    1. Fernández-González M,
    2. Agulló V,
    3. de la Rica A,
    4. Infante A,
    5. Carvajal M,
    6. García JA, et al.
    Performance of saliva specimens for the molecular detection of SARS-CoV-2 in the community setting: does sample collection method matter? J Clin Microbiol 2021; 59: e03033–e03020.
    OpenUrl
  47. 47.
    1. Trobajo-Sanmartín C,
    2. Adelantado M,
    3. Navascués A,
    4. Guembe MJ,
    5. Rodrigo-Rincón I,
    6. Castilla J, et al.
    Self-collection of saliva specimens as a suitable alternative to nasopharyngeal swabs for the diagnosis of SARS-CoV-2 by RT-qPCR. J Clin Med 2021; 10: 299.
    OpenUrl
  48. 48.↵
    1. Herrera LA,
    2. Hidalgo-Miranda A,
    3. Reynoso-Noverón N,
    4. Meneses-García AA,
    5. Mendoza-Vargas A,
    6. Reyes-Grajeda JP, et al.
    Saliva is a reliable and accessible source for the detection of SARS-CoV-2. Int J Infect Dis 2021; 105: 83–90.
    OpenUrl
  49. 49.↵
    1. Kim DH,
    2. Kim Y,
    3. Kim SW,
    4. Hwang SH.
    Use of narrowband imaging for the diagnosis and screening of laryngeal cancer: a systematic review and meta-analysis. Head Neck 2020; 42: 2635–2643.
    OpenUrl
  50. 50.↵
    1. Meseguer-Henarejos AB,
    2. Sánchez-Meca J,
    3. López-Pina JA,
    4. Carles-Hernández R.
    Inter- and intra-rater reliability of the modified Ashworth scale: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2018; 54: 576–590.
    OpenUrlCrossRefPubMed
  51. 51.↵
    1. Sakanashi D,
    2. Asai N,
    3. Nakamura A,
    4. Miyazaki N,
    5. Kawamoto Y,
    6. Ohno T, et al.
    Comparative evaluation of nasopharyngeal swab and saliva specimens for the molecular detection of SARS-CoV-2 RNA in Japanese patients with COVID-19. J Infect Chemother 2021; 27: 126–129.
    OpenUrlCrossRef
  52. 52.↵
    1. Rao M,
    2. Rashid FA,
    3. Sabri FSAH,
    4. Jamil NN,
    5. Zain R,
    6. Hashim R, et al.
    Comparing nasopharyngeal swab and early morning saliva for the identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2021; 72: e352–e356.
    OpenUrl
  53. 53.↵
    1. Kivelä JM,
    2. Jarva H,
    3. Lappalainen M,
    4. Kurkela S.
    Saliva-based testing for diagnosis of SARS-CoV-2 infection: a meta-analysis. J Med Virol 2021; 93: 1256–1258.
    OpenUrl
  54. 54.↵
    1. Chen L,
    2. Zhao J,
    3. Peng J,
    4. Li X,
    5. Deng X,
    6. Geng Z, et al.
    Detection of SARS-CoV-2 in saliva and characterization of oral symptoms in COVID-19 patients. Cell Prolif 2020; 53: e12923.
    OpenUrlCrossRef
  55. 55.↵
    1. Lee RA,
    2. Herigon JC,
    3. Benedetti A,
    4. Pollock NR,
    5. Denkinger CM.
    Performance of saliva, oropharyngeal swabs, and nasal swabs for SARS-CoV-2 molecular detection: a systematic review and meta-analysis. J Clin Microbiol 2021; 59: e02881–e02820.
    OpenUrl
  56. 56.↵
    1. Gentzsch M,
    2. Rossier BC.
    A pathophysiological model for COVID-19: critical importance of transepithelial sodium transport upon airway infection. Function (Oxf) 2020; 1: zqaa024.
    OpenUrlCrossRef
  57. 57.↵
    1. Roque M,
    2. Proudfoot K,
    3. Mathys V,
    4. Yu S,
    5. Krieger N,
    6. Gernon T, et al.
    A review of nasopharyngeal swab and saliva tests for SARS-CoV-2 infection: disease timelines, relative sensitivities, and test optimization. J Surg Oncol 2021; 124: 465–475.
    OpenUrl
  58. 58.↵
    1. Kociolek LK,
    2. Muller WJ,
    3. Yee R,
    4. Dien Bard J,
    5. Brown CA,
    6. Revell PA, et al.
    Comparison of upper respiratory viral load distributions in asymptomatic and symptomatic children diagnosed with SARS-CoV-2 infection in pediatric hospital testing programs. J Clin Microbiol 2020; 59: e02593–e02520.
    OpenUrl
  59. 59.↵
    1. Zayet S,
    2. Klopfenstein T,
    3. Mercier J,
    4. Kadiane-Oussou NJ,
    5. Lan Cheong Wah L,
    6. Royer PY, et al.
    Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. Infection 2021; 49: 361–365.
    OpenUrl
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 43 (1)
Saudi Medical Journal
Vol. 43, Issue 1
1 Jan 2022
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The diagnostic accuracy of RT-PCR from self-collected saliva versus nasopharyngeal sampling
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
The diagnostic accuracy of RT-PCR from self-collected saliva versus nasopharyngeal sampling
Do Hyun Kim, Mohammed A. Basurrah, Jae Hong Han, Sung Won Kim, Se Hwan Hwang
Saudi Medical Journal Jan 2022, 43 (1) 9-30; DOI: 10.15537/smj.2022.43.1.20210743

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The diagnostic accuracy of RT-PCR from self-collected saliva versus nasopharyngeal sampling
Do Hyun Kim, Mohammed A. Basurrah, Jae Hong Han, Sung Won Kim, Se Hwan Hwang
Saudi Medical Journal Jan 2022, 43 (1) 9-30; DOI: 10.15537/smj.2022.43.1.20210743
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgment
    • Appendix 1 - Participants, interventions, comparisons, outcomes, timings, and study design (PICOTS)
    • Appendix 2 - Study characteristics
    • Appendix 3 - Methodological quality of all included studies
    • Appendix 4 - Forest plots of the sensitivity of the included studies
    • Appendix 5 - Forest plots of the specificity of the included studies
    • Appendix 6 - Forest plots of the negative predictive value of the included studies
    • Appendix 7 - Forest plots of the positive predictive value of the included studies
    • Appendix 8 - Forest plots of A) the sensitivity, B) the specificity, C) the negative predictive value, and D) the positive predictive value regarding the effect of geographic differences on self-collected saliva for COVID-19
    • Appendix 9 - Forest plots of A) the sensitivity, B) the specificity, C) the negative predictive value, and D) the positive predictive value regarding the effect of saliva collection method on self-collected saliva for COVID-19
    • Appendix 10 - Forest plots of A) the sensitivity, B) the specificity, C) the negative predictive value, and D) the positive predictive value regarding the effect of presence or absence of symptoms on the diagnostic odds ratios on self-collected saliva for COVID-19
    • Appendix 11 - The effect of geographic differences on the diagnostic odds ratios of self-collected saliva for COVID-19
    • Appendix 12 - The effect of saliva collection method on the diagnostic odds ratios of self-collected saliva for COVID-19
    • Appendix 13 - The effect of presence or absence of symptoms on the diagnostic odds ratios of self-collected saliva for COVID-19
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Breast cancer incidence after hormonal treatment for infertility
  • Pocket-creation method versus conventional method of endoscopic submucosal dissection for early gastric cancer
  • Advancing genetic counselling in Southern Africa
Show more Systematic Review

Similar Articles

Keywords

  • coronavirus infections
  • nasopharynx
  • saliva
  • specimen handling

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire