Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Research ArticleOriginal Article
Open Access

Development of a candidate multi-epitope vaccine against Sphingobacterium spiritivorum

Reverse vaccinology and immunoinformatics approach

Mubarak A. Alamri
Saudi Medical Journal June 2023, 44 (6) 544-559; DOI: https://doi.org/10.15537/smj.2023.44.6.20220733
Mubarak A. Alamri
From the Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia.
MSc, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mubarak A. Alamri
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Zhang M ,
    2. Li A ,
    3. Xu S ,
    4. Chen M ,
    5. Yao Q ,
    6. Xiao B , et al.
    Sphingobacterium Micropteri Sp. Nov. and Sphingobacterium Litopenaei Sp. Nov., Isolated from aquaculture water. Int J Syst Evol Microbiol 2021; 71: 10.
    OpenUrl
  2. 2.↵
    1. Abro AH ,
    2. Rahimi Shahmirzadi MR ,
    3. Jasim LM ,
    4. Badreddine S ,
    5. Al Deesi Z.
    Sphingobacterium multivorum bacteremia and acute meningitis in an immunocompetent adult patient: a case report. Iran Red Crescent Med J 2016; 18: e38750.
    OpenUrl
  3. 3.↵
    1. Koh YR ,
    2. Kim SY ,
    3. Chang CL ,
    4. Shin HJ ,
    5. Kim KH ,
    6. Yi J.
    The first Korean case of Sphingobacterium spiritivorum bacteremia in a patient with acute myeloid leukemia. Ann Lab Med 2013 Jul; 33: 283–287.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Lambiase A ,
    2. Rossano F ,
    3. Del Pezzo M ,
    4. Valeria R ,
    5. Angela S ,
    6. de Gregorio F , et al.
    Sphingobacterium respiratory tract infection in patients with cystic fibrosis. BMC research notes 2009; 2: 1–5.
    OpenUrl
  5. 5.↵
    1. Akazawa N ,
    2. Itoh N ,
    3. Morioka H ,
    4. Ogata T ,
    5. Ishibana Y ,
    6. Murakami H , et al.
    Cholangitis with Sphingobacterium multivorum and Acinetobacter junii bacteremia in a patient with gastric cancer: A case report. J Infect Chemother 2022; 28: 1419–1423.
    OpenUrl
  6. 6.↵
    1. Barahona F ,
    2. Slim J.
    Sphingobacterium multivorum: case report and literature review. NMNI 2015; 7: 33–36.
    OpenUrl
  7. 7.↵
    1. Sahar N ,
    2. Shahid M ,
    3. Ali A.
    A Case of Sphingobacterium spiritivorum bacteremia and literature review. Infect Dis Clin Pract 2020; 28: 7–9.
    OpenUrl
  8. 8.↵
    1. Gupta A ,
    2. Logan J ,
    3. Elhag N ,
    4. Almond N.
    Sphingobacterium spiritivorum infection in a patient with end stage renal disease on haemodialysis. Ann Clin Microbiol Antimicrob 2016; 15: 25.
    OpenUrlCrossRef
  9. 9.↵
    1. Delfani S ,
    2. Fooladi AAI ,
    3. Mobarez AM ,
    4. Emaneini M ,
    5. Amani J ,
    6. Sedighian H.
    In silico analysis for identifying potential vaccine candidates against Staphylococcus aureus. Clin Exp Vaccine Res 2015; 4: 99–106.
    OpenUrl
  10. 10.↵
    1. Mendes MD ,
    2. Cavallo RR ,
    3. Carvalhães CHVFG ,
    4. Ferrarinia MAG.
    Septic arthritis by Sphingobacterium multivorum in immunocompromised pediatric patient. Rev Paul Pediatr 2016; 34: 379–383.
    OpenUrl
  11. 11.↵
    1. Hegde NR ,
    2. Gauthami S ,
    3. Kumar HMS ,
    4. Bayry J.
    The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2018; 13: 117–130.
    OpenUrl
  12. 12.↵
    1. Capelli R ,
    2. Peri C ,
    3. Villa R ,
    4. Nithichanon A ,
    5. Conchillo-Solé O ,
    6. Yero D , et al.
    BPSL1626: reverse and structural vaccinology reveal a novel candidate for vaccine design against Burkholderia pseudomallei. Antibodies (Basel) 2018; 7: 26.
    OpenUrl
  13. 13.↵
    1. Carvalho TF ,
    2. Haddad JPA ,
    3. Paixão TA ,
    4. Santos RL.
    Meta-analysis and advancement of brucellosis vaccinology. PloS one 2016; 11: e0166582.
    OpenUrlCrossRef
  14. 14.↵
    1. Anthony JM ,
    2. Verma R.
    Sphingobacterium spiritivorum septicaemia associated with cellulitis in a patient with Parkinson’s disease. BMJ Case Rep 2016; 2016: bcr2016215319.
  15. 15.↵
    1. Besaury, L.
    Floret J, Rémond C. Sphingobacterium prati sp. nov., isolated from agricultural soil and involved in lignocellulose deconstruction. Int J Syst Evol Microbiol 2021; 71: 004963.
    OpenUrl
  16. 16.↵
    1. Echefu G ,
    2. Mahat R ,
    3. Katragadda S ,
    4. Reddy K.
    Sphingobacterium spritivorum associated with spontaneous bacterial peritonitis in a cirrhotic patient with gram-positive bacteremia. Cureus 2022; 14: e26053.
    OpenUrl
  17. 17.↵
    1. Souvorov A ,
    2. Kapustin Y ,
    3. Kiryutin B ,
    4. Chetvernin V ,
    5. Tatusova T ,
    6. Lipman D.
    Gnomon–NCBI eukaryotic gene prediction tool. National Center for Biotechnology Information; Bethesda (MD): 2010. p. 1–24. From: https://www.ncbi.nlm.nih.gov/core/assets/genome/files/Gnomon-description.pdf
  18. 18.↵
    1. Chaudhari NM ,
    2. Gupta VK ,
    3. Dutta C.
    BPGA-an ultra-fast pan-genome analysis pipeline. Sci Rep 2016; 6: 24373.
    OpenUrlCrossRefPubMed
  19. 19.↵
    1. Huang Y ,
    2. Niu B ,
    3. Gao Y ,
    4. Fu L ,
    5. Li W.
    CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 2010; 26: 680–682.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Sasirekha, R ,
    2. Sharma O ,
    3. Sugumar S.
    In silico analysis of diversity, specificity and molecular evolution of Stenotrophomonas phages. Environ Microbiol Rep 2022; 14: 422–430.
    OpenUrl
  21. 21.↵
    1. Beiranvand S ,
    2. Doosti A ,
    3. Mirzaei SA.
    Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes. Infect Genet Evol 2021; 96: 105138.
    OpenUrl
  22. 22.↵
    1. Adnan S ,
    2. Hanif M ,
    3. Khan AH ,
    4. Muhammad Latif, Ullah K ,
    5. Bashir F.
    Impact of heat index and ultraviolet index on COVID-19 in major cities of Pakistan. J Occup Environ Med 2021; 63: 98–103.
    OpenUrl
  23. 23.↵
    1. Kakoli Bose
    1. Singh N ,
    2. Bose K.
    Introduction to Recombinant Protein Purification. In: Kakoli Bose , editor. Textbook on Cloning, Expression and Purification of Recombinant Proteins. Singapore: Springer; 2022. p. 115–140.
  24. 24.↵
    1. Solanki V ,
    2. Tiwari M ,
    3. Tiwari V.
    Subtractive proteomic analysis of antigenic extracellular proteins and design a multi-epitope vaccine against Staphylococcus aureus. Microbiol Immunol 2021; 65: 302–316.
    OpenUrl
  25. 25.↵
    1. Peele KA ,
    2. Srihansa T ,
    3. Krupanidhi S ,
    4. Ayyagari VS ,
    5. Venkateswarulu TC.
    Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study. J Biomol Struct Dyn 2021; 39: 3793–3801.
    OpenUrl
  26. 26.↵
    1. Vita R ,
    2. Mahajan S ,
    3. Overton JA ,
    4. Dhanda SK ,
    5. Martini S ,
    6. Cantrell JR , et al.
    The immune epitope database (IEDB): 2018 update. Nucleic Acids Res 2019; 47: D339–D343.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Dhanda SK ,
    2. Mahajan S ,
    3. Paul S ,
    4. Yan Z ,
    5. Kim H ,
    6. Jespersen MC , et al.
    IEDB-AR: immune epitope database—analysis resource in 2019. Nucleic acids research 2019; 47: W502–W506.
    OpenUrlCrossRefPubMed
  28. 28.↵
    1. Rida T ,
    2. Ahmad S ,
    3. Ullah A ,
    4. Ismail S ,
    5. Ul Qamar MT ,
    6. Afsheen Z , et al.
    Pan-Genome analysis of oral bacterial pathogens to predict a potential novel multi-epitopes vaccine candidate. Int J Environ Res Public Health 2022; 19: 8408.
    OpenUrl
  29. 29.↵
    1. Khastar A ,
    2. Jamshidain-Mojaver M ,
    3. Farzin H ,
    4. Baloch MJ ,
    5. Salamatian I ,
    6. Akbarzadeh-Sherbaf K.
    Production and purification of recombinant B subunit of vibrio cholerae toxin in Escherichia coli. J Cell Mol Med 2022; 13: 113–120.
    OpenUrl
  30. 30.↵
    1. Stratmann T.
    Cholera Toxin Subunit B as Adjuvant--An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines (Basel) 2015; 3: 579–596.
    OpenUrl
  31. 31.↵
    1. Tripathy CS ,
    2. Sahoo BC ,
    3. Dash M ,
    4. Sahoo D ,
    5. Sahoo S ,
    6. Kar B.
    In-silico structural modelling of cytochrome complex proteins of white turmeric (Curcuma zedoaria). Plant Science Today 2022; 9: 555–563.
    OpenUrl
  32. 32.↵
    1. Khan T ,
    2. Islam J ,
    3. Parihar A ,
    4. Islam R ,
    5. Jerin TJ ,
    6. Dhote R , et al.
    Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Inform Med Unlocked 2021; 24: 100578.
    OpenUrl
  33. 33.↵
    1. Kelley LA ,
    2. Mezulis S ,
    3. Yates CM ,
    4. Wass MN ,
    5. Sternberg MJE.
    The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015; 10: 845–858.
    OpenUrlCrossRefPubMed
  34. 34.↵
    1. Lee GR ,
    2. Heo L ,
    3. Chaok S.
    Effective protein model structure refinement by loop modeling and overall relaxation. Proteins 2016; 84: 293–301.
    OpenUrlPubMed
  35. 35.↵
    1. Ko J ,
    2. Hahnbeom Park ,
    3. Lim Heo
    , Chaok Seok GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 2012; 40: W294–W297.
    OpenUrlCrossRefPubMedWeb of Science
  36. 36.↵
    1. Heo L ,
    2. Park H ,
    3. Seok C.
    GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res 2013; 41: W384–W388.
    OpenUrlCrossRefPubMedWeb of Science
  37. 37.↵
    1. Monastyrskyy B ,
    2. Kryshtafovych A ,
    3. Moult J ,
    4. Tramontano A ,
    5. Fidelis K.
    Assessment of protein disorder region predictions in CASP10. Proteins 2014; 82: 127–137.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Wiederstein M ,
    2. Sippl MJ.
    ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007; 35: W407–W410.
    OpenUrlCrossRefPubMedWeb of Science
  39. 39.↵
    1. Hooshmand N ,
    2. Fayazi J ,
    3. Tabatabaei S ,
    4. Behbahan NGG.
    Prediction of B cell and T-helper cell epitopes candidates of bovine leukaemia virus (BLV) by in silico approach.Vet Med Sci. 2020; 6: 730–739.
    OpenUrl
  40. 40.↵
    1. Ponomarenko J ,
    2. Bui HH ,
    3. Li W ,
    4. Fusseder N ,
    5. Bourne PE ,
    6. Alessandro Sette , et al.
    ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008; 9: 1–8.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Kozakov D ,
    2. Hall DR ,
    3. Xia B ,
    4. Porter KA ,
    5. Padhorny D ,
    6. Christine Yueh C , et al.
    The ClusPro web server for protein–protein docking. Nat Protoc 2017; 12: 255–278.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Schneidman-Duhovny D ,
    2. Inbar Y ,
    3. Nussinov R ,
    4. Wolfson HJ.
    PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33: W363–W367.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Berman HM ,
    2. Westbrook J ,
    3. Feng Z ,
    4. Gilliland G ,
    5. Bhat TN ,
    6. Weissig H , et al.
    The protein data bank. Nucleic Acids Res 2000; 28: 235–242.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Mashiach E ,
    2. Schneidman-Duhovny D ,
    3. Andrusier N ,
    4. Nussinov R
    , Wolfson1 HJ. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 2008; 36: W229–W232.
    OpenUrlCrossRefPubMedWeb of Science
  45. 45.↵
    1. Hollingsworth SA ,
    2. Dror RO.
    Molecular dynamics simulation for all. Neuron 2018; 99: 1129–1143.
    OpenUrlCrossRefPubMed
  46. 46.↵
    1. Samantarrai D ,
    2. Sagar AL ,
    3. Gudla R ,
    4. Siddavattam D.
    TonB-dependent transporters in sphingomonads: unraveling their distribution and function in environmental adaptation. Microorganisms 2020; 8: 359.
    OpenUrl
  47. 47.
    1. Fairman JW ,
    2. Noinaj N ,
    3. Buchanan SK.
    The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 2011; 21: 523–531.
    OpenUrlCrossRefPubMed
  48. 48.↵
    1. Pimenta AL ,
    2. Racher K ,
    3. Jamieson L ,
    4. Blight MA ,
    5. Holland I B.
    Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin. J Bacteriol 2005; 187: 7471–7480.
    OpenUrlAbstract/FREE Full Text
  49. 49.↵
    1. Gupta S ,
    2. Kapoor P ,
    3. Chaudhary K ,
    4. Gautam A ,
    5. Kumar R
    ; open source drug discovery consortium; Raghava GPS. In silico approach for predicting toxicity of peptides and proteins. PloS one 2013; 8: e73957.
    OpenUrlCrossRefPubMed
  50. 50.↵
    1. Guli M ,
    2. Illiandri O ,
    3. Winarsih S ,
    4. Barlianto W ,
    5. Prawiro SR.
    Immunoenhancing effect of Lactobacillus Reuteri on immunized mice intestine using Cholerae toxin subtype B. J Adv Pharm Educ Res 2021; 11: 1–17.
    OpenUrl
  51. 51.↵
    1. Girija SA ,
    2. Gunasekaran S ,
    3. Priyadharsini JV.
    Accessing the T-Cell and B-Cell immuno-dominant peptides from A. baumannii biofilm associated protein (bap) as vaccine candidates: A computational approach. Int J Pept Res Ther 2021; 27: 37–45.
    OpenUrl
  52. 52.↵
    1. Geourjon C ,
    2. Deleage G.
    SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995; 11: 681–684.
    OpenUrlCrossRefPubMed
  53. 53.↵
    1. Laskowski RM ,
    2. MacArthur MW ,
    3. Thornton J.
    PROCHECK: validation of protein-structure coordinates. 2006. Second Online Edition. Kluwar Academic Publishers, Netherlands; 2012.
  54. 54.↵
    1. Kroumova, V ,
    2. Rossati A ,
    3. Bargiacchi O ,
    4. Garavelli PL ,
    5. Camaggi A ,
    6. Caroppo S , et al.
    From soil to blood: first human case of Sphingobacterium hotanense bacteraemia. Infez Med 2017; 25: 75–76.
    OpenUrl
  55. 55.↵
    1. Naz K ,
    2. Ullah N ,
    3. Naz A ,
    4. Irum S ,
    5. Dar HA ,
    6. Zaheer T , et al.
    The epidemiological and pangenome landscape of staphylococcus aureus and identification of conserved novel candidate vaccine antigens. Curr Proteomics 2021; 19: 114–126.
    OpenUrl
  56. 56.↵
    1. Zawawi A ,
    2. Forman R ,
    3. Smith H ,
    4. Mair I ,
    5. Jibril M ,
    6. Albaqshi MH , et al.
    In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS pathogens 2020; 16: e1008243.
    OpenUrlCrossRef
  57. 57.↵
    1. Soltan MA ,
    2. Elbassiouny N ,
    3. Gamal H ,
    4. Elkaeed EB ,
    5. Eid RA ,
    6. Eldeen MA , et al.
    In silico prediction of a multitope vaccine against Moraxella catarrhalis: reverse vaccinology and immunoinformatics. Vaccines (Basel) 2021; 9: 669.
    OpenUrl
  58. 58.↵
    1. Behbahani M ,
    2. Moradi M ,
    3. Hassan Mohabatkar H.
    In silico design of a multi-epitope peptide construct as a potential vaccine candidate for Influenza A based on neuraminidase protein. In Silico Pharmacol 2021; 9: 1–13.
    OpenUrl
  59. 59.↵
    1. Nezafat N ,
    2. Karimi Z ,
    3. Eslami M ,
    4. Mohkam M ,
    5. Zandian S ,
    6. Ghasemi Y.
    Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Comput Biol Chem 2016; 62: 82–95.
    OpenUrlCrossRef
  60. 60.↵
    1. Livingston B ,
    2. Crimi C ,
    3. Newman M ,
    4. Higashimoto Y ,
    5. Appella E ,
    6. Sidney J , et al.
    A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J Immunol 2002; 168: 5499–5506.
    OpenUrlAbstract/FREE Full Text
  61. 61.↵
    1. Huang Z ,
    2. Zhang C ,
    3. Xing XH.
    Design and construction of chimeric linker library with controllable flexibilities for precision protein engineering. Methods Enzymol 2021; 647: 23–49.
    OpenUrl
  62. 62.↵
    1. Mauro VP ,
    2. Chappell SA.
    A critical analysis of codon optimization in human therapeutics. Trends Mol Med 2014; 20: 604–613.
    OpenUrlCrossRef
  63. 63.↵
    1. Garg VK ,
    2. Avashthi H ,
    3. Tiwari A ,
    4. Jain PA ,
    5. Ramkete PW ,
    6. Kayastha AM , et al.
    MFPPI–multi FASTA ProtParam interface. Bioinformation 2016; 12: 74–77.
    OpenUrl
  64. 64.↵
    1. Källberg M ,
    2. Margaryan G ,
    3. Wang S ,
    4. Ma J ,
    5. Xu J , et al.
    RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 2014; 1137: 17–27.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Gaafar BBM ,
    2. Ali SA ,
    3. Abd-elrahman KA ,
    4. Yassir A.
    Almofti YA. Immunoinformatics approach for multiepitope vaccine prediction from H, M, F, and N proteins of Peste des Petits ruminants virus. J Immunol Res. 2019; 2019: 6124030.
    OpenUrl
  66. 66.↵
    1. Kalita P ,
    2. Padhi AK ,
    3. Zhang KYJ ,
    4. Tripathi T.
    Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog 2020; 145: 104236.
    OpenUrl
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 44 (6)
Saudi Medical Journal
Vol. 44, Issue 6
1 Jun 2023
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Development of a candidate multi-epitope vaccine against Sphingobacterium spiritivorum
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Development of a candidate multi-epitope vaccine against Sphingobacterium spiritivorum
Mubarak A. Alamri
Saudi Medical Journal Jun 2023, 44 (6) 544-559; DOI: 10.15537/smj.2023.44.6.20220733

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Development of a candidate multi-epitope vaccine against Sphingobacterium spiritivorum
Mubarak A. Alamri
Saudi Medical Journal Jun 2023, 44 (6) 544-559; DOI: 10.15537/smj.2023.44.6.20220733
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Methods
    • Results
    • Discussion
    • Acknowledgment
    • Appendix 1 - Presents the results of the pan-genome analysis. (A) Depicts a phylogenetic tree, while (B) Illustrates the curves of the pan and core genome, and (C) Displays the frequency distribution of gene families within genes. (D) Illustrates the quantity of newly incorporated genes in each respective genome
    • Appendix 2 - Prediction of models’ quality score by GalaxyWEB
    • Appendix 3 - Quality scores for selected vaccine model. (A) The secondary structure of the vaccine construct. (B) A secondary structural analysis of the vaccine was conducted, which revealed the fluctuations of its structural atoms within a minimal range, indicating the stability of its structure
    • Appendix 4 - Docking results of vaccine construct with TLR4 receptor
    • Appendix 5 -3D model of the 7 predicted conformational B-cell epitopes. The yellow regions are the conformational B-cell epitopes, while the grey regions are the residue remnant. (A) 8 residues with 0.797 score. (B) 7 residues with 0.763 score. (C) 7 residues with 0.663 score. (D) 12 residues with 0.645 score. (E) 8 residues with 0.643 score. (F) 5 residues with 0.551 score. (G) 5 residues with 0.524 score
    • Appendix 6 - Population coverage analysis predicted by immune database server
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Prolonged flight exposure and its effects on sinonasal health among aircrew members
  • Identifying individuals at risk of post-stroke depression
  • Hematological parameters in recent and past dengue infections in Jazan Province, Saudi Arabia
Show more Original Article

Similar Articles

Keywords

  • Sphingobacterium spiritivorum
  • chimeric vaccine
  • conformational B-cell epitopes
  • molecular docking
  • binding free energies calculation

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire