Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

The protagonist of contemporary and emerging nanotechnology-based theranostics and therapeutic approaches in reshaping intensive care unit

Ling Xie and Yun Chen
Saudi Medical Journal August 2024, 45 (8) 759-770; DOI: https://doi.org/10.15537/smj.2024.45.8.20240069
Ling Xie
From the Department of Critical Medicine, First People’s Hospital of Linping District, Hangzhou, China.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ling Xie
  • For correspondence: [email protected]
Yun Chen
From the Department of Critical Medicine, First People’s Hospital of Linping District, Hangzhou, China.
PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. 1.↵
    1. Wong HR
    . Intensive care medicine in 2050: precision medicine. Intensive Care Med 2017; 43: 1507-1509.
    OpenUrl
  2. 2.↵
    1. Martin-Loeches I,
    2. Perner A
    . Focus on infection and sepsis in intensive care patients. Intensive Care Med 2016; 42: 491-493.
    OpenUrl
  3. 3.↵
    1. Zilahi G,
    2. Artigas A,
    3. Martin-Loeches I
    . What’s new in multidrug-resistant pathogens in the ICU? Ann Intensive Care 2016; 6: 96.
    OpenUrlPubMed
  4. 4.↵
    1. Perner A,
    2. Rhodes A,
    3. Venkatesh B,
    4. Angus DC,
    5. Martin-Loeches I,
    6. Preiser JC, et al.
    Sepsis: frontiers in supportive care, organisation and research. Intensive Care Med 2017; 43: 496-508.
    OpenUrl
  5. 5.↵
    1. Martin-Loeches I,
    2. Deja M,
    3. Koulenti D,
    4. Dimopoulos G,
    5. Marsh B,
    6. Torres A, et al.
    Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med 2013; 39: 672-681.
    OpenUrlCrossRefPubMed
  6. 6.↵
    1. Nwankire CE,
    2. Venkatanarayanan A,
    3. Glennon T,
    4. Keyes TE,
    5. Forster RJ,
    6. Ducrée J
    . Label-free impedance detection of cancer cells from whole blood on an integrated centrifugal microfluidic platform. Biosens Bioelectron 2015; 68: 382-389.
    OpenUrl
  7. 7.↵
    1. Singh M,
    2. Tong Y,
    3. Webster K,
    4. Cesewski E,
    5. Haring AP,
    6. Laheri S, et al.
    3D printed conformal microfluidics for isolation and profiling of biomarkers from whole organs. Lab Chip 2017; 17: 2561-2571.
    OpenUrl
  8. 8.↵
    1. Beitler JR,
    2. Goligher EC,
    3. Schmidt M,
    4. Spieth PM,
    5. Zanella A,
    6. Martin-Loeches I, et al.
    Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med 2016; 42: 756-767.
    OpenUrl
  9. 9.↵
    1. Sakr Y,
    2. Lobo SM,
    3. Moreno RP,
    4. Gerlach H,
    5. Ranieri VM,
    6. Michalopoulos A, et al.
    Patterns and early evolution of organ failure in the intensive care unit and their relation to outcome. Crit Care 2012; 16: R222.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Bohmer N,
    2. Demarmels N,
    3. Tsolaki E,
    4. Gerken L,
    5. Keevend K,
    6. Bertazzo S, et al.
    Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time. ACS Appl Mater Interfaces 2017; 9: 29571-29579.
    OpenUrl
  11. 11.↵
    1. Basit H,
    2. Maher S,
    3. Forster RJ,
    4. Keyes TE
    . Electrochemically triggered release of reagent to the proximal leaflet of a microcavity supported lipid bilayer. Langmuir 2017; 33: 6691-6700.
    OpenUrl
  12. 12.↵
    1. Gobbo OL,
    2. Sjaastad K,
    3. Radomski MW,
    4. Volkov Y,
    5. Prina-Mello A
    . Magnetic nanoparticles in cancer theranostics. Theranostics 2015; 5: 1249-1263.
    OpenUrl
  13. 13.↵
    1. Haque M,
    2. Sartelli M,
    3. McKimm J,
    4. Abu Bakar M
    . Health care-associated infections - an overview. Infect Drug Resist 2018; 11: 2321-2333.
    OpenUrlCrossRefPubMed
  14. 14.↵
    1. Revelas A
    . Healthcare - associated infections: a public health problem. Niger Med J 2012; 53: 59-64.
    OpenUrlCrossRefPubMed
  15. 15.↵
    1. Angus DC,
    2. van der Poll T
    . Severe sepsis and septic shock. N Engl J Med 2013; 369: 840-851.
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    1. Rittirsch D,
    2. Hoesel LM,
    3. Ward PA
    . The disconnect between animal models of sepsis and human sepsis. J Leukoc Biol 2007; 81: 137-143.
    OpenUrlCrossRefPubMedWeb of Science
  17. 17.↵
    1. Kelly KL,
    2. Coronado E,
    3. Zhao LL,
    4. Schatz GC
    . The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications 2003: 668-677.
  18. 18.↵
    1. Atiyeh BS,
    2. Costagliola M,
    3. Hayek SN,
    4. Dibo SA
    . Effect of silver on burn wound infection control and healing: review of the literature. Burns 2007; 33: 139-148.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Rai M,
    2. Yadav A,
    3. Gade A
    . Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 2009; 27: 76-83.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Wong KK,
    2. Liu X
    . Silver nanoparticles - the real “silver bullet” in clinical medicine? MedChemComm 2010; 1: 125-131.
    OpenUrl
  21. 21.↵
    1. Munger MA,
    2. Radwanski P,
    3. Hadlock GC,
    4. Stoddard G,
    5. Shaaban A,
    6. Falconer J, et al.
    In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine 2014; 10: 1-9.
    OpenUrlCrossRefPubMed
  22. 22.↵
    1. Loher S,
    2. Schneider OD,
    3. Maienfisch T,
    4. Bokorny S,
    5. Stark WJ
    . Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces. Small 2008; 4: 824-832.
    OpenUrlCrossRefPubMedWeb of Science
  23. 23.↵
    1. Kollef MH,
    2. Afessa B,
    3. Anzueto A,
    4. Veremakis C,
    5. Kerr KM,
    6. Margolis BD, et al.
    Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: the NASCENT randomized trial. JAMA 2008; 300: 805-813.
    OpenUrlCrossRefPubMedWeb of Science
  24. 24.↵
    1. Pierrakos C,
    2. Vincent JL
    . Sepsis biomarkers: a review. Crit Care 2010; 14: R15.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Vincent JL,
    2. Teixeira L
    . Sepsis biomarkers. Value and limitations. Am J Respir Crit Care Med 2014; 190: 1081-1082.
    OpenUrlCrossRefPubMedWeb of Science
  26. 26.↵
    1. Howes PD,
    2. Chandrawati R,
    3. Stevens MM.
    Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science 2014; 346: 1247390.
    OpenUrlAbstract/FREE Full Text
  27. 27.↵
    1. Wang S,
    2. Bi S,
    3. Wang Z,
    4. Xia J,
    5. Zhang F,
    6. Yang M, et al.
    A plasmonic aptasensor for ultrasensitive detection of thrombin via arrested rolling circle amplification. Chem Commun (Camb) 2015; 51: 7927-7930.
    OpenUrl
  28. 28.↵
    1. De la Rica R,
    2. Stevens MM
    . Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol 2012; 7: 821-824.
    OpenUrlCrossRefPubMed
  29. 29.↵
    1. Chapman R,
    2. Lin Y,
    3. Burnapp M,
    4. Bentham A,
    5. Hillier D,
    6. Zabron A, et al.
    Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano 2015; 9: 2565-2573.
    OpenUrl
  30. 30.↵
    1. Geissler D,
    2. Charbonnière LJ,
    3. Ziessel RF,
    4. Butlin NG,
    5. Löhmannsröben HG,
    6. Hildebrandt N
    . Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem Int Ed Engl 2010; 49: 1396-1401.
    OpenUrlCrossRefPubMed
  31. 31.↵
    1. Lowe SB,
    2. Dick JA,
    3. Cohen BE,
    4. Stevens MM
    . Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates. ACS Nano 2012; 6: 851-857.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.↵
    1. Omri A,
    2. Suntres ZE,
    3. Shek PN
    . Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol 2002; 64: 1407-1413.
    OpenUrlCrossRefPubMedWeb of Science
  33. 33.
    1. Walsh TJ,
    2. Finberg RW,
    3. Arndt C,
    4. Hiemenz J,
    5. Schwartz C,
    6. Bodensteiner D, et al.
    Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 1999; 340: 764-771.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.↵
    1. Drulis-Kawa Z,
    2. Dorotkiewicz-Jach A
    . Liposomes as delivery systems for antibiotics. Int J Pharm 2010; 387: 187-198.
    OpenUrlCrossRefPubMed
  35. 35.↵
    1. Baier G,
    2. Cavallaro A,
    3. Vasilev K,
    4. Mailänder V,
    5. Musyanovych A,
    6. Landfester K
    . Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 2013; 14: 1103-1112.
    OpenUrl
  36. 36.↵
    1. Henry BD,
    2. Neill DR,
    3. Becker KA,
    4. Gore S,
    5. Bricio-Moreno L,
    6. Ziobro R, et al.
    Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol 2015; 33: 81-88.
    OpenUrlCrossRefPubMed
  37. 37.↵
    1. Herrmann IK,
    2. Urner M,
    3. Koehler FM,
    4. Hasler M,
    5. Roth-Z’graggen B,
    6. Grass RN, et al.
    Blood purification using functionalized core/shell nanomagnets. Small 2010; 6: 1388-1392.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Kang JH,
    2. Super M,
    3. Yung CW,
    4. Cooper RM,
    5. Domansky K,
    6. Graveline AR, et al.
    An extracorporeal blood-cleansing device for sepsis therapy. Nat Med 2014; 20: 1211-1216.
    OpenUrlCrossRefPubMed
  39. 39.
    1. Lee HY,
    2. Bae DR,
    3. Park JC,
    4. Song H,
    5. Han WS,
    6. Jung JH
    . A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew Chem Int Ed Engl 2009; 48: 1239-1243.
    OpenUrlPubMed
  40. 40.
    1. Herrmann IK,
    2. Schlegel A,
    3. Graf R,
    4. Schumacher CM,
    5. Senn N,
    6. Hasler M, et al.
    Nanomagnet-based removal of lead and digoxin from living rats. Nanoscale 2013; 5: 8718-8723.
    OpenUrlCrossRefPubMed
  41. 41.↵
    1. Lee JJ,
    2. Jeong KJ,
    3. Hashimoto M,
    4. Kwon AH,
    5. Rwei A,
    6. Shankarappa SA, et al.
    Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett 2014; 14: 1-5.
    OpenUrlCrossRefPubMed
  42. 42.↵
    1. Stark WJ
    . Nanoparticles in biological systems. Angew Chem Int Ed Engl 2011; 50: 1242-1258.
    OpenUrlCrossRefPubMedWeb of Science
  43. 43.↵
    1. Haley RW,
    2. Culver DH,
    3. White JW,
    4. Morgan WM,
    5. Emori TG,
    6. Munn VP, et al.
    The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985; 121: 182-205.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.↵
    1. Haley RW,
    2. White JW,
    3. Culver DH,
    4. Hughes JM
    . The financial incentive for hospitals to prevent nosocomial infections under the prospective payment system. An empirical determination from a nationally representative sample. JAMA 1987; 257: 1611-1614.
    OpenUrlCrossRefPubMedWeb of Science
  45. 45.↵
    1. Boyce JM
    . Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 2007; 65: 50-54.
    OpenUrlCrossRefPubMedWeb of Science
  46. 46.↵
    1. Oie S,
    2. Suenaga S,
    3. Sawa A,
    4. Kamiya A
    . Association between isolation sites of methicillin-resistant Staphylococcus aureus (MRSA) in patients with MRSA-positive body sites and MRSA contamination in their surrounding environmental surfaces. Jpn J Infect Dis 2007; 60: 367-369.
    OpenUrlPubMed
  47. 47.↵
    1. Hardy KJ,
    2. Oppenheim BA,
    3. Gossain S,
    4. Gao F,
    5. Hawkey PM
    . A study of the relationship between environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and patients’ acquisition of MRSA. Infect Control Hosp Epidemiol 2006; 27: 127-132.
    OpenUrlCrossRefPubMedWeb of Science
  48. 48.↵
    1. Pritchard RC,
    2. Raper RF
    . Doctors and handwashing: instilling Semmelweis’ message. Med J Aust 1996; 164: 389-390.
    OpenUrlPubMedWeb of Science
  49. 49.↵
    1. Hsueh PR,
    2. Huang HC,
    3. Young TG,
    4. Su CY,
    5. Liu CS,
    6. Yen MY
    . Bacteria killing nanotechnology Bio-Kil effectively reduces bacterial burden in intensive care units. Eur J Clin Microbiol Infect Dis 2014; 33: 591-597.
    OpenUrl
  50. 50.↵
    1. Chen YL,
    2. Yeh MY,
    3. Huang SY,
    4. Liu CM,
    5. Sun CC,
    6. Lu HF, et al.
    Feasibility study for epidemic prevention and control in a regional hospital. Mol Med Rep 2012; 5: 859-865.
    OpenUrl
  51. 51.↵
    1. Yang L,
    2. Yu S,
    3. Lin H,
    4. Chang Y,
    5. Wang L,
    6. Chun C, et al.
    The effect of applying quality control circle in reducing nosocomial infections. Nosocom Infect Control J 2001; 11: 137-147.
    OpenUrl
  52. 52.↵
    1. Weber DJ,
    2. Rutala WA,
    3. Miller MB,
    4. Huslage K,
    5. Sickbert-Bennett E
    . Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. Am J Infect Control 2010; 38: S25-S33.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.↵
    1. Passaretti CL,
    2. Otter JA,
    3. Reich NG,
    4. Myers J,
    5. Shepard J,
    6. Ross T, et al.
    An evaluation of environmental decontamination with hydrogen peroxide vapor for reducing the risk of patient acquisition of multidrug-resistant organisms. Clin Infect Dis 2013; 56: 27-35.
    OpenUrlCrossRefPubMed
  54. 54.↵
    1. Haley RW,
    2. Morgan WM,
    3. Culver DH,
    4. White JW,
    5. Emori TG,
    6. Mosser J, et al.
    Update from the SENIC project. Hospital infection control: recent progress and opportunities under prospective payment. Am J Infect Control 1985; 13: 97-108.
    OpenUrlCrossRefPubMedWeb of Science
  55. 55.↵
    1. Tseng SH,
    2. Lee CM,
    3. Lin TY,
    4. Chang SC,
    5. Chuang YC,
    6. Yen MY, et al.
    Combating antimicrobial resistance: antimicrobial stewardship program in Taiwan. J Microbiol Immunol Infect 2012; 45: 79-89.
    OpenUrlCrossRefPubMed
  56. 56.↵
    1. Hsueh PR,
    2. Teng LJ,
    3. Chen CY,
    4. Chen WH,
    5. Yu CJ,
    6. Ho SW, et al.
    Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg Infect Dis 2002; 8: 827-832.
    OpenUrlCrossRefPubMedWeb of Science
  57. 57.↵
    1. Ohl M,
    2. Schweizer M,
    3. Graham M,
    4. Heilmann K,
    5. Boyken L,
    6. Diekema D
    . Hospital privacy curtains are frequently and rapidly contaminated with potentially pathogenic bacteria. Am J Infect Control 2012; 40: 904-906.
    OpenUrlCrossRefPubMed
  58. 58.↵
    1. Nseir S,
    2. Blazejewski C,
    3. Lubret R,
    4. Wallet F,
    5. Courcol R,
    6. Durocher A
    . Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect 2011; 17: 1201-1208.
    OpenUrlCrossRefPubMed
  59. 59.↵
    1. Hu TY,
    2. Frieman M,
    3. Wolfram J
    . Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol 2020; 15: 247-249.
    OpenUrlCrossRefPubMed
  60. 60.↵
    1. Imani SM,
    2. Ladouceur L,
    3. Marshall T,
    4. Maclachlan R,
    5. Soleymani L,
    6. Didar TF
    . Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020; 14: 12341-12369.
    OpenUrl
  61. 61.↵
    1. Dourado E
    . Accelerating availability of vaccine candidates for COVID-19. [Updated 2020; accessed 3 Feb 2024]. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3564664
  62. 62.↵
    1. Itani R,
    2. Tobaiqy M,
    3. Al Faraj A
    . Optimizing use of theranostic nanoparticles as a life-saving strategy for treating COVID-19 patients. Theranostics 2020; 10: 5932-5942.
    OpenUrl
  63. 63.↵
    1. Fathizadeh H,
    2. Maroufi P,
    3. Momen-Heravi M,
    4. Dao S,
    5. Köse Ş,
    6. Ganbarov K, et al.
    Protection and disinfection policies against SARS-CoV-2 (COVID-19). Infez Med 2020; 28: 185-191.
    OpenUrlPubMed
  64. 64.↵
    1. Mody VV,
    2. Siwale R,
    3. Singh A,
    4. Mody HR
    . Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2: 282-289.
    OpenUrlCrossRefPubMed
  65. 65.↵
    1. Shahzadi S,
    2. Zafar N,
    3. Sharif R
    . Antibacterial activity of metallic nanoparticles. [Updated 2018; accessed 5 Feb 2024]. Available from: https://www.intechopen.com/chapters/59058
  66. 66.↵
    1. Sportelli MC,
    2. Izzi M,
    3. Kukushkina EA,
    4. Hossain SI,
    5. Picca RA,
    6. Ditaranto N, et al.
    Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials (Basel) 2020; 10: 802.
    OpenUrl
  67. 67.↵
    1. Balagna C,
    2. Perero S,
    3. Percivalle E,
    4. Nepita EV,
    5. Ferraris M
    . Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics 2020; 1: 100006.
    OpenUrl
  68. 68.↵
    1. Weiss C,
    2. Carriere M,
    3. Fusco L,
    4. Capua I,
    5. Regla-Nava JA,
    6. Pasquali M, et al.
    Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano 2020; 14: 6383-6406.
    OpenUrl
  69. 69.↵
    1. Widdowson N
    . New mask material can remove virus-size nanoparticles. [Updated 2020; accessed 05 Feb 2024]. Available from: https://phys.org/news/2020-04-mask-material-virus-size-nanoparticles.html
  70. 70.↵
    1. Palmieri V,
    2. Papi M
    . Can graphene take part in the fight against COVID-19? Nano Today 2020; 33: 100883.
    OpenUrl
  71. 71.↵
    1. Talebian S,
    2. Wallace GG,
    3. Schroeder A,
    4. Stellacci F,
    5. Conde J
    . Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol 2020; 15: 618-621.
    OpenUrl
  72. 72.↵
    1. Gungordu Er S,
    2. Tabish TA,
    3. Edirisinghe M,
    4. Matharu RK
    . Antiviral properties of porous graphene, graphene oxide and graphene foam ultrafine fibers against Phi6 bacteriophage. Front Med (Lausanne) 2022; 9: 1032899.
    OpenUrl
  73. 73.↵
    1. Sui X,
    2. Zhang R,
    3. Liu S,
    4. Duan T,
    5. Zhai L,
    6. Zhang M, et al.
    RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol 2018; 9: 1371.
    OpenUrlCrossRef
  74. 74.↵
    1. Singh S,
    2. Singh A
    . Current status of nanomedicine and nanosurgery. Anesth Essays Res 2013; 7: 237-242.
    OpenUrl
  75. 75.↵
    1. Chang TM
    . 50th anniversary of artificial cells: their role in biotechnology, nanomedicine, regenerative medicine, blood substitutes, bioencapsulation, cell/stem cell therapy and nanorobotics. Artif Cells Blood Substit Immobil Biotechnol 2007; 35: 545-554.
    OpenUrlPubMed
  76. 76.↵
    1. Martel S,
    2. Felfoul O,
    3. Mathieu JB,
    4. Chanu A,
    5. Tamaz S,
    6. Mohammadi M, et al.
    MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Rob Res 2009; 28: 1169-1182.
    OpenUrl
  77. 77.↵
    1. Al Sheheri SZ,
    2. Al-Amshany ZM,
    3. Al Sulami QA,
    4. Tashkandi NY,
    5. Hussein MA,
    6. El-Shishtawy RM
    . The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des Monomers Polym 2019; 22: 8-53.
    OpenUrl
  78. 78.↵
    1. Ayandele E,
    2. Sarkar B,
    3. Alexandridis P
    . Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials (Basel) 2012; 2: 445-475.
    OpenUrl
  79. 79.↵
    1. Hasan A,
    2. Morshed M,
    3. Memic A,
    4. Hassan S,
    5. Webster TJ,
    6. Marei HE
    . Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine 2018; 13: 5637-5655.
    OpenUrl
  80. 80.↵
    1. Yaghini E,
    2. Seifalian AM,
    3. MacRobert AJ
    . Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine (Lond) 2009; 4: 353-363.
    OpenUrl
  81. 81.↵
    1. Mahmoud W,
    2. Sukhanova A,
    3. Oleinikov V,
    4. Rakovich YP,
    5. Donegan JF,
    6. Pluot M, et al.
    Emerging applications of fluorescent nanocrystals quantum dots for micrometastases detection. Proteomics 2010; 10: 700-716.
    OpenUrlPubMed
  82. 82.↵
    1. Jennings LE,
    2. Long NJ
    . ‘Two is better than one’--probes for dual-modality molecular imaging. Chem Commun (Camb) 2009: 3511-3524.
  83. 83.↵
    1. Ferreira L,
    2. Karp JM,
    3. Nobre L,
    4. Langer R
    . New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 2008; 3: 136-146.
    OpenUrlCrossRefPubMedWeb of Science
  84. 84.↵
    1. Malam Y,
    2. Loizidou M,
    3. Seifalian AM
    . Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30: 592-599.
    OpenUrlCrossRefPubMedWeb of Science
  85. 85.↵
    1. De Mel A,
    2. Jell G,
    3. Stevens MM,
    4. Seifalian AM
    . Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 2008; 9: 2969-2979.
    OpenUrlCrossRefPubMedWeb of Science
  86. 86.↵
    1. Zawadzak E,
    2. Bil M,
    3. Ryszkowska J,
    4. Nazhat SN,
    5. Cho J,
    6. Bretcanu O, et al.
    Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds. Biomed Mater 2009; 4: 015008.
    OpenUrlPubMed
  87. 87.↵
    1. Waheed S,
    2. Li Z,
    3. Zhang F,
    4. Chiarini A,
    5. Armato U,
    6. Wu J
    . Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022; 20: 395.
    OpenUrl
  88. 88.↵
    1. Bruna T,
    2. Maldonado-Bravo F,
    3. Jara P,
    4. Caro N
    . Silver nanoparticles and their antibacterial applications. Int J Mol Sci 2021; 22: 7202.
    OpenUrl
  89. 89.↵
    1. Mubeen B,
    2. Ansar AN,
    3. Rasool R,
    4. Ullah I,
    5. Imam SS,
    6. Alshehri S, et al.
    Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics (Basel) 2021; 10: 1473.
    OpenUrl
  90. 90.↵
    1. Wu MJ,
    2. Feng YS,
    3. Sung WP,
    4. Surampalli RY
    . Quantification and analysis of airborne bacterial characteristics in a nursing care institution. J Air Waste Manag Assoc 2011; 61: 732-739.
    OpenUrlPubMed
  91. 91.↵
    1. Wong V,
    2. Staniforth K,
    3. Boswell TC
    . Environmental contamination and airborne microbial counts: a role for hydroxyl radical disinfection units? J Hosp Infect 2011; 78: 194-199.
    OpenUrlPubMed
  92. 92.↵
    1. Wang JL,
    2. Chen ML,
    3. Lin YE,
    4. Chang SC,
    5. Chen YC
    . Association between contaminated faucets and colonization or infection by nonfermenting gram-negative bacteria in intensive care units in Taiwan. J Clin Microbiol 2009; 47: 3226-3230.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 45 (8)
Saudi Medical Journal
Vol. 45, Issue 8
1 Aug 2024
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The protagonist of contemporary and emerging nanotechnology-based theranostics and therapeutic approaches in reshaping intensive care unit
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
The protagonist of contemporary and emerging nanotechnology-based theranostics and therapeutic approaches in reshaping intensive care unit
Ling Xie, Yun Chen
Saudi Medical Journal Aug 2024, 45 (8) 759-770; DOI: 10.15537/smj.2024.45.8.20240069

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The protagonist of contemporary and emerging nanotechnology-based theranostics and therapeutic approaches in reshaping intensive care unit
Ling Xie, Yun Chen
Saudi Medical Journal Aug 2024, 45 (8) 759-770; DOI: 10.15537/smj.2024.45.8.20240069
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • Acknowledgment
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

Keywords

  • ICU
  • nanotechnology
  • SARS-CoV-2
  • bacterial infection
  • Bio-Kil

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire