Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension

Hui-Bo Wang and Jun Yang
Saudi Medical Journal October 2015, 36 (10) 1151-1155; DOI: https://doi.org/10.15537/smj.2015.10.12458
Hui-Bo Wang
From the Department of Cardiology (Wang), the Institute of Cardiovascular Diseases (Yang), The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China
MM, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Yang
From the Department of Cardiology (Wang), the Institute of Cardiovascular Diseases (Yang), The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China
MM, MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. James PA,
    2. Oparil S,
    3. Carter BL,
    4. Cushman WC,
    5. Dennison-Himmelfarb C,
    6. Handler J,
    7. et al.
    (2014) 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA, 311:507–520.
  2. ↵
    1. Mancia G,
    2. Fagard R,
    3. Narkiewicz K,
    4. Redon J,
    5. Zanchetti A,
    6. Böhm M,
    7. et al.
    (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J, 34:2159–2219.
  3. ↵
    1. Poulter NR,
    2. Prabhakaran D,
    3. Caulfield M
    (2015) Hypertension. Lancet, pii: S0140-6736(14)61468-9.
  4. ↵
    1. Bátkai S,
    2. Thum T
    (2012) MicroRNAs in hypertension: mechanisms and therapeutic targets. Curr Hypertens Rep 14:79–87.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Li S,
    2. Zhu J,
    3. Zhang W,
    4. Chen Y,
    5. Zhang K,
    6. Popescu LM,
    7. et al.
    (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124:175–184.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Lee RC,
    2. Feinbaum RL,
    3. Ambros V
    (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854.
    OpenUrlCrossRefPubMedWeb of Science
  7. ↵
    1. McManus DD,
    2. Ambros V
    (2011) Circulating MicroRNAs in cardiovascular disease. Circulation 124:1908–1910.
    OpenUrlFREE Full Text
  8. ↵
    1. Van Rooij E,
    2. Olson EN
    (2007) MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest 117:2369–2376.
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Bartel DP
    (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297.
    OpenUrlCrossRefPubMedWeb of Science
  10. ↵
    1. Suzuki HI,
    2. Miyazono K
    (2011) Emerging complexity of microRNA generation cascades. J Biochem 149:15–25.
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    1. Lee Y,
    2. Ahn C,
    3. Han J,
    4. Choi H,
    5. Kim J,
    6. Yim J,
    7. et al.
    (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419.
    OpenUrlCrossRefPubMedWeb of Science
  12. ↵
    1. Yi R,
    2. Qin Y,
    3. Macara IG,
    4. Cullen BR
    (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17:3011–3016.
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Klimczak D,
    2. Pączek L,
    3. Jażdżewski K,
    4. Kuch M
    (2015) MicroRNAs: powerful regulators and potential diagnostic tools in cardiovascular disease. Kardiol Pol 73:1–6.
    OpenUrl
  14. ↵
    1. Guo H,
    2. Ingolia NT,
    3. Weissman JS,
    4. Bartel DP
    (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840.
    OpenUrlCrossRefPubMedWeb of Science
  15. ↵
    1. Ferrari R
    (2013) RAAS inhibition and mortality in hypertension. Glob Cardiol Sci Pract 2013:269–278.
    OpenUrl
  16. ↵
    1. Mentz RJ,
    2. Bakris GL,
    3. Waeber B,
    4. McMurray JJ,
    5. Gheorghiade M,
    6. Ruilope LM,
    7. et al.
    (2013) The past, present and future of renin-angiotensin aldosterone system inhibition. Int J Cardiol 167:1677–1687.
    OpenUrlCrossRefPubMed
  17. ↵
    1. Fournier D,
    2. Luft FC,
    3. Bader M,
    4. Ganten D,
    5. Andrade-Navarro MA
    (2012) Emergence and evolution of the renin-angiotensin-aldosterone system. J Mol Med (Berl) 90:495–508.
    OpenUrlCrossRefPubMed
  18. ↵
    1. Jugdutt BI
    (2015) Expanding Saga of the Renin-Angiotensin System: The Angiotensin II Counter-Regulatory AT2 Receptor Pathway. Circulation 131:1380–1383.
    OpenUrlFREE Full Text
  19. ↵
    1. Schweda F
    (2015) Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch 467:565–576.
    OpenUrlCrossRefPubMed
  20. ↵
    1. Givertz MM
    (2001) Manipulation of the renin-angiotensin system. Circulation 104:E14–E18.
    OpenUrlCrossRefPubMedWeb of Science
  21. ↵
    1. Head GA,
    2. Lukoshkova EV,
    3. Burke SL,
    4. Malpas SC,
    5. Lambert EA,
    6. Janssen BJ
    (2001) Comparing spectral and invasive estimates of baroreflex gain. IEEE Eng Med Biol Mag 20:43–52.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Jackson KL,
    2. Marques FZ,
    3. Watson AM,
    4. Palma-Rigo K,
    5. Nguyen-Huu TP,
    6. Morris BJ,
    7. et al.
    (2013) A novel interaction between sympathetic overactivity and aberrant regulation of renin by miR-181a in BPH/2J genetically hypertensive mice. Hypertension 62:775–781.
    OpenUrlCrossRef
  23. ↵
    1. Marques FZ,
    2. Campain AE,
    3. Tomaszewski M,
    4. Zukowska-Szczechowska E,
    5. Yang YH,
    6. Charchar FJ,
    7. et al.
    (2011) Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 58:1093–1098.
    OpenUrlCrossRef
  24. ↵
    1. Kohlstedt K,
    2. Trouvain C,
    3. Boettger T,
    4. Shi L,
    5. Fisslthaler B,
    6. Fleming I
    (2013) AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. Circ Res 112:1150–1158.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Iio A,
    2. Takagi T,
    3. Miki K,
    4. Naoe T,
    5. Nakayama A,
    6. Akao Y
    (2013) DDX6 post-transcriptionally down-regulates miR-143/145 expression through host gene NCR143/145 in cancer cells. Biochim Biophys Acta 1829:1102–1110.
    OpenUrlCrossRefPubMed
  26. ↵
    1. Hu B,
    2. Song JT,
    3. Qu HY,
    4. Bi CL,
    5. Huang XZ,
    6. Liu XX,
    7. et al.
    (2014) Mechanical stretch suppresses microRNA-145 expression by activating extracellular signal-regulated kinase 1/2 and upregulating angiotensin-converting enzyme to alter vascular smooth muscle cell phenotype. PLoS One 9:e96338.
    OpenUrlCrossRefPubMed
  27. ↵
    1. Park JK,
    2. Henry JC,
    3. Jiang J,
    4. Esau C,
    5. Gusev Y,
    6. Lerner MR,
    7. et al.
    (2011) miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 406:518–523.
    OpenUrlCrossRefPubMed
  28. ↵
    1. Eskildsen TV,
    2. Jeppesen PL,
    3. Schneider M,
    4. Nossent AY,
    5. Sandberg MB,
    6. Hansen PB,
    7. et al.
    (2013) Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14:11190–11207.
    OpenUrlCrossRefPubMed
  29. ↵
    1. Chandra S,
    2. Narang R,
    3. Sreenivas V,
    4. Bhatia J,
    5. Saluja D,
    6. Srivastava K
    (2014) Association of angiotensin II type 1 receptor (A1166C) gene polymorphism and its increased expression in essential hypertension: a case-control study. PLoS One 9:e101502.
    OpenUrlCrossRefPubMed
  30. ↵
    1. Mottl AK,
    2. Shoham DA,
    3. North KE
    (2008) Angiotensin II type 1 receptor polymorphisms and susceptibility to hypertension: a HuGE review. Genet Med 10:560–574.
    OpenUrlCrossRefPubMedWeb of Science
  31. ↵
    1. Ceolotto G,
    2. Papparella I,
    3. Bortoluzzi A,
    4. Strapazzon G,
    5. Ragazzo F,
    6. Bratti P,
    7. et al.
    (2011) Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 24:241–246.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Martin MM,
    2. Lee EJ,
    3. Buckenberger JA,
    4. Schmittgen TD,
    5. Elton TS
    (2006) MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 281:18277–18284.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Sethupathy P,
    2. Borel C,
    3. Gagnebin M,
    4. Grant GR,
    5. Deutsch S,
    6. Elton TS,
    7. et al.
    (2007) Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3’ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81:405–413.
    OpenUrlCrossRefPubMedWeb of Science
  34. ↵
    1. Luo JQ,
    2. Wang LY,
    3. He FZ,
    4. Sun NL,
    5. Tang GF,
    6. Wen JG,
    7. et al.
    (2014) Effect of NR3C2 genetic polymorphisms on the blood pressure response to enalapril treatment. Pharmacogenomics 15:201–208.
    OpenUrlCrossRefPubMed
  35. ↵
    1. Sõber S,
    2. Laan M,
    3. Annilo T
    (2010) MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun 391:727–732.
    OpenUrlCrossRefPubMedWeb of Science
  36. ↵
    1. Berger S,
    2. Bleich M,
    3. Schmid W,
    4. Cole TJ,
    5. Peters J,
    6. Watanabe H,
    7. et al.
    (1998) Mineralocorticoid receptor knockout mice: pathophysiology of Na+metabolism. Proc Natl Acad Sci U S A 95:9424–9429.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Donoghue M,
    2. Hsieh F,
    3. Baronas E,
    4. Godbout K,
    5. Gosselin M,
    6. Stagliano N,
    7. et al.
    (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9.
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Patel SK,
    2. Velkoska E,
    3. Freeman M,
    4. Wai B,
    5. Lancefield TF,
    6. Burrell LM
    (2014) From gene to protein-experimental and clinical studies of ACE2 in blood pressure control and arterial hypertension. Front Physiol 5:227.
    OpenUrlPubMed
  39. ↵
    1. Varagic J,
    2. Ahmad S,
    3. Nagata S,
    4. Ferrario CM
    (2014) ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 16:420.
    OpenUrlCrossRefPubMed
  40. ↵
    1. Lambert DW,
    2. Lambert LA,
    3. Clarke NE,
    4. Hooper NM,
    5. Porter KE,
    6. Turner AJ,
    7. et al.
    (2014) Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421. Clinical Science 127:243–249.
    OpenUrlAbstract/FREE Full Text
    1. Hewagama A,
    2. Gorelik G,
    3. Patel D,
    4. Liyanarachchi P,
    5. McCune WJ,
    6. Somers E,
    7. et al.
    (2013) Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 41:60–71.
    OpenUrlCrossRefPubMed
  41. ↵
    1. Chen LJ,
    2. Xu R,
    3. Yu HM,
    4. Chang Q,
    5. Zhong JC
    (2015) The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. Int J Hypertens 2015:896861.
    OpenUrlPubMed
  42. ↵
    1. Gu Q,
    2. Wang B,
    3. Zhang XF,
    4. Ma YP,
    5. Liu JD,
    6. Wang XZ
    (2014) Contribution of renin-angiotensin system to exercise-induced attenuation of aortic remodeling and improvement of endothelial function in spontaneously hypertensive rats. Cardiovasc Pathol 23:298–305.
    OpenUrlCrossRefPubMed
  43. ↵
    1. Kemp JR,
    2. Unal H,
    3. Desnoyer R,
    4. Yue H,
    5. Bhatnagar A,
    6. Karnik SS
    (2014) Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin–angiotensin system. J Mol Cell Cardiol 75:25–39.
    OpenUrlCrossRefPubMed
  44. ↵
    1. Jenjaroenpun P,
    2. Kuznetsov VA
    (2009) TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 10:S9.
    OpenUrl
  45. ↵
    1. Padia SH,
    2. Carey RM
    (2013) AT2 receptors: beneficial counter-regulatory role in cardiovascular and renal function. Pflugers 465:99–110.
    OpenUrl
  46. ↵
    1. Creemers EE,
    2. Tijsen AJ,
    3. Pinto YM
    (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495.
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Obama T,
    2. Eguchi S
    (2014) MicroRNA as a novel component of the tissue renin angiotensin system. J Mol Cell Cardiol 75:98–99.
    OpenUrl
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 36 (10)
Saudi Medical Journal
Vol. 36, Issue 10
1 Oct 2015
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension
Hui-Bo Wang, Jun Yang
Saudi Medical Journal Oct 2015, 36 (10) 1151-1155; DOI: 10.15537/smj.2015.10.12458

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension
Hui-Bo Wang, Jun Yang
Saudi Medical Journal Oct 2015, 36 (10) 1151-1155; DOI: 10.15537/smj.2015.10.12458
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • MicroRNAs that decrease blood pressure
    • MicroRNAs which increase blood pressure
    • Footnotes
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire