Skip to main content

Main menu

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Other Publications
    • NeuroSciences Journal

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Saudi Medical Journal
  • Other Publications
    • NeuroSciences Journal
  • My alerts
  • Log in
Saudi Medical Journal

Advanced Search

  • Home
  • Content
    • Latest
    • Archive
    • home
  • Info for
    • Authors
    • Reviewers
    • Subscribers
    • Institutions
    • Advertisers
    • Join SMJ
  • About Us
    • About Us
    • Editorial Office
    • Editorial Board
  • More
    • Advertising
    • Alerts
    • Feedback
    • Folders
    • Help
  • Follow psmmc on Twitter
  • Visit psmmc on Facebook
  • RSS
Review ArticleReview Article
Open Access

Roles of nucleolin

Focus on cancer and anti-cancer therapy

Zhuo Chen and XinHua Xu
Saudi Medical Journal December 2016, 37 (12) 1312-1318; DOI: https://doi.org/10.15537/smj.2016.12.15972
Zhuo Chen
From the Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
MMed
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
XinHua Xu
From the Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People’s Hospital, Yichang, China
MMed
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: [email protected]
  • Article
  • Figures & Data
  • eLetters
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Li N,
    2. Yuan K,
    3. Yan F,
    4. Huo Y,
    5. Zhu T,
    6. Liu X,
    7. et al.
    (2009) PinX1 is recruited to the mitotic chromosome periphery by Nucleolin and facilitates chromosome congression. Biochem Biophys Res Commun 384:76–81.
    OpenUrlCrossRefPubMed
  2. ↵
    1. Lee JH,
    2. Lee YS,
    3. Jeong SA,
    4. Khadka P,
    5. Roth J,
    6. Chung IK
    (2014) Catalytically active telomerase holoenzyme is assembled in the dense fibrillar component of the nucleolus during S phase. Histochem Cell Biol 141:137–152.
    OpenUrlCrossRefPubMed
  3. ↵
    1. Das S,
    2. Cong R,
    3. Shandilya J,
    4. Senapati P,
    5. Moindrot B,
    6. Monier K,
    7. et al.
    (2013) Characterization of nucleolin K88 acetylation defines a new pool of nucleolin colocalizing with pre-mRNA splicing factors. FEBS Lett 587:417–424.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Salvetti A,
    2. Couté Y,
    3. Epstein A,
    4. Arata L,
    5. Kraut A,
    6. Navratil V,
    7. et al.
    (2016) Nuclear Functions of Nucleolin through Global Proteomics and Interactomic Approaches. J Proteome Res 15:1659–1669.
    OpenUrlCrossRefPubMed
  5. ↵
    1. Turner AJ,
    2. Knox AA,
    3. Prieto JL,
    4. McStay B,
    5. Watkins NJ
    (2009) A novel small-subunit processome assembly intermediate that contains the U3 snoRNP, nucleolin, RRP5, and DBP4. Mol Cell Biol 29:3007–3017.
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Meng GZ,
    2. Xiao SJ,
    3. Zeng SE,
    4. Li YQ
    (2011) [Down regulation of cell surface expressed nucleolin inhibits the growth of hepatocellular carcinoma cells in vitro]. Zhonghua Zhong Liu Za Zhi 33:23–27, Chinese.
    OpenUrlPubMed
  7. ↵
    1. Qiu W,
    2. Wang G,
    3. Sun X,
    4. Ye J,
    5. Wei F,
    6. Shi X,
    7. et al.
    (2015) The involvement of cell surface nucleolin in the initiation of CCR6 signaling in human hepatocellular carcinoma. Med Oncol 32:75.
    OpenUrl
  8. ↵
    1. Nigg EA,
    2. Cajanek L,
    3. Arquint C
    (2014) The centrosome duplication cycle in health and disease. FEBS Lett 588:2366–2372.
    OpenUrlCrossRefPubMed
  9. ↵
    1. Lv S,
    2. Zhang J,
    3. Han M,
    4. Wang W,
    5. Zhang Y,
    6. Zhuang D,
    7. et al.
    (2015) Nucleolin promotes TGF-ßsignaling initiation via TGF-ßreceptor I in glioblastoma. J Mol Neurosci 55:1–6.
    OpenUrl
  10. ↵
    1. Lv S,
    2. Dai C,
    3. Liu Y,
    4. Sun B,
    5. Shi R,
    6. Han M,
    7. Bian R,
    8. et al.
    (2015) Cell surface protein C23 affects EGF-EGFR induced activation of ERK and PI3K-AKT pathways. J Mol Neurosci 55:519–524.
    OpenUrl
  11. ↵
    1. Sato H,
    2. Kusumoto-Matsuo R,
    3. Ishii Y,
    4. Mori S,
    5. Nakahara T,
    6. Shinkai-Ouchi F,
    7. et al.
    (2009) Identification of nucleolin as a protein that binds to human papillomavirus type 16 DNA. Biochem Biophys Res Commun 387:525–530.
    OpenUrlPubMed
  12. ↵
    1. Suganuma M,
    2. Watanabe T,
    3. Yamaguchi K,
    4. Takahashi A,
    5. Fujiki H
    (2012) Human gastric cancer development with TNF-ß-inducing protein secreted from Helicobacter pylori. Cancer Lett 322:133–138.
    OpenUrlCrossRefPubMed
  13. ↵
    1. Watanabe T,
    2. Hirano K,
    3. Takahashi A,
    4. Yamaguchi K,
    5. Beppu M,
    6. Fujiki H,
    7. et al.
    (2010) Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull 33:796–803.
    OpenUrlCrossRefPubMed
  14. ↵
    1. Shang Y,
    2. Kakinuma S,
    3. Nishimura M,
    4. Kobayashi Y,
    5. Nagata K,
    6. Shimada Y
    (2012) Interleukin-9 receptor gene is transcriptionally regulated by nucleolin in T-cell lymphoma cells. Mol Carcinog 51:619–627.
    OpenUrlPubMed
  15. ↵
    1. Kobayashi J,
    2. Fujimoto H,
    3. Sato J,
    4. Hayashi I,
    5. Burma S,
    6. Matsuura S,
    7. et al.
    (2012) Nucleolin participates in DNA double-strand break-induced damage response through MDC1-dependent pathway. PLoS One 7:e49245.
    OpenUrlCrossRefPubMed
  16. ↵
    1. De A,
    2. Donahue SL,
    3. Tabah A,
    4. Castro NE,
    5. Mraz N,
    6. Cruise JL,
    7. et al.
    (2006) A novel interaction [corrected] of nucleolin with Rad51. Biochem Biophys Res Commun 344:206–213.
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Ishimaru D,
    2. Zuraw L,
    3. Ramalingam S,
    4. Sengupta TK,
    5. Bandyopadhyay S,
    6. Reuben A,
    7. et al.
    (2010) Mechanism of regulation of bcl-2 mRNA by nucleolin and AþU-rich element-binding factor 1 (AUF1). J Biol Chem 285:27182–27191.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Pickering BF,
    2. Yu D,
    3. Van Dyke MW
    (2011) Nucleolin protein interacts with microprocessor complex to affect biogenesis of microRNAs 15a and 16. J Biol Chem 286:44095–44103.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Chen J,
    2. Guo K,
    3. Kastan MB
    (2012) Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J Biol Chem 287:16467–16476.
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Wise JF,
    2. Berkova Z,
    3. Mathur R,
    4. Zhu H,
    5. Braun FK,
    6. Tao RH,
    7. et al.
    (2013) Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood 121:4729–4739.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Farin K,
    2. Schokoroy S,
    3. Haklai R,
    4. Cohen-Or I,
    5. Elad-Sfadia G,
    6. Reyes-Reyes ME,
    7. et al.
    (2011) Oncogenic synergism between ErbB1, nucleolin, and mutant Ras. Cancer Res 71:2140–2151.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Watanabe T,
    2. Takahashi A,
    3. Suzuki K,
    4. Kurusu-Kanno M,
    5. Yamaguchi K,
    6. Fujiki H,
    7. et al.
    (2014) Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TNF-ß-inducing protein of Helicobacter pylori. Int J Cancer 134:2373–2382.
    OpenUrlCrossRefPubMed
  23. ↵
    1. Yang Y,
    2. Yang C,
    3. Zhang J
    (2015) C23 protein meditates bone morphogenetic protein 2-mediated EMT via up-regulation of Erk1/2 and Akt in gastriccancer. Med Oncol 32:76.
    OpenUrl
  24. ↵
    1. Hsu TI,
    2. Lin SC,
    3. Lu PS,
    4. Chang WC,
    5. Hung CY,
    6. Yeh YM,
    7. et al.
    (2015) MMP7-mediated cleavage of nucleolin at Asp255 induces MMP9 expression to promote tumor malignancy. Oncogene 34:826–837.
    OpenUrlCrossRef
  25. ↵
    1. Qi J,
    2. Li H,
    3. Liu N,
    4. Xing Y,
    5. Zhou G,
    6. et al.
    (2015) The implications and mechanisms of the extra-nuclear nucleolin in the esophageal squamous cell carcinomas. Med Oncol 32:45.
    OpenUrlCrossRef
  26. ↵
    1. Dai C,
    2. Lv S,
    3. Shi R,
    4. Ding J,
    5. Zhong X,
    6. et al.
    (2015) Nuclear Protein C23 on the Cell Surface Plays an Important Role in Activation of CXCR4 Signaling in Glioblastoma. Mol Neurobiol 52:1521–1526.
    OpenUrl
  27. ↵
    1. Qiu W,
    2. Wang G,
    3. Sun X,
    4. Ye J,
    5. Wei F,
    6. Shi X,
    7. et al.
    (2015) The involvement of cell surface nucleolin in the initiation of CCR6 signaling in human hepatocellular carcinoma. Med Oncol 32:75.
    OpenUrl
  28. ↵
    1. Liang P,
    2. Jiang B,
    3. Lv C,
    4. Huang X,
    5. Sun L,
    6. Zhang P,
    7. et al.
    (2013) The expression and proangiogenic effect of nucleolin during the recovery of heat-denatured HUVECs. Biochim Biophys Acta 1830:4500–4512.
    OpenUrlCrossRef
  29. ↵
    1. Cheng DD,
    2. Zhao HG,
    3. Yang YS,
    4. Hu T,
    5. Yang QC
    (2014) GSK3 negatively regulates HIF1a mRNA stability via nucleolin in the MG63 osteosarcoma cell line. Biochem Biophys Res Commun 443:598–603.
    OpenUrl
  30. ↵
    1. Zhuo W,
    2. Luo C,
    3. Wang X,
    4. Song X,
    5. Fu Y,
    6. Luo Y,
    7. et al.
    (2010) Endostatin inhibits tumour lymphangiogenesis and lymphatic metastasis via cell surface nucleolin on lymphangiogenic endothelial cells. J Pathol 222:249–260.
    OpenUrlCrossRefPubMed
  31. ↵
    1. Joo EJ,
    2. Yang H,
    3. Park Y,
    4. Park NY,
    5. Toida T,
    6. Linhardt RJ,
    7. et al.
    (2010) Induction of nucleolin translocation by acharan sulfate in A549 human lung adenocarcinoma. J Cell Biochem 110:1272–1278.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Wu DM,
    2. Zhang P,
    3. Liu RY,
    4. Sang YX,
    5. Zhou C,
    6. Xu GC,
    7. et al.
    (2014) Phosphorylation and changes in the distribution of nucleolin promote tumor metastasis via the PI3K/Akt pathwayin colorectal carcinoma. FEBS Lett 588:1921–1929.
    OpenUrl
  33. ↵
    1. Xu Z,
    2. Joshi N,
    3. Agarwal A,
    4. Dahiya S,
    5. Bittner P,
    6. Smith E,
    7. et al.
    (2012) Knocking down nucleolin expression in gliomas inhibits tumor growth and induces cell cycle arrest. J Neurooncol 108:59–67.
    OpenUrlCrossRefPubMed
  34. ↵
    1. Wu CD,
    2. Chou HW,
    3. Kuo YS,
    4. Lu RM,
    5. Hwang YC,
    6. Wu HC,
    7. et al.
    (2012) Nucleolin antisense oligodeoxynucleotides induce apoptosis and may be used as a potential drug for nasopharyngeal carcinoma therapy. Oncol Rep 27:94–100.
    OpenUrlPubMed
  35. ↵
    1. Tominaga K,
    2. Srikantan S,
    3. Lee EK,
    4. Subaran SS,
    5. Martindale JL,
    6. Abdelmohsen K,
    7. et al.
    (2011) Competitive regulation of nucleolin expression by HuR and miR-494. Mol Cell Biol 31:4219–4231.
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Lai WY,
    2. Wang WY,
    3. Chang YC,
    4. Chang CJ,
    5. Yang PC,
    6. Peck K,
    7. et al.
    (2014) Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras. Biomaterials 35:2905–2914.
    OpenUrlCrossRefPubMed
  37. ↵
    1. Rosenberg JE1,
    2. Bambury RM,
    3. Van Allen EM,
    4. Drabkin HA,
    5. Lara PN Jr.,
    6. Harzstark AL,
    7. et al.
    (2014) A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs 32:178–187.
    OpenUrlCrossRefPubMedWeb of Science
  38. ↵
    1. Malik MT,
    2. O’Toole MG,
    3. Casson LK,
    4. Thomas SD,
    5. Bardi GT,
    6. Reyes-Reyes EM,
    7. et al.
    (2015) AS1411 conjugated gold nanospheres and their potential for breast cancer therapy. Oncotarget 6:22270–22281.
    OpenUrl
  39. ↵
    1. Li L,
    2. Hou J,
    3. Liu X,
    4. Guo Y,
    5. Wu Y,
    6. Zhang L,
    7. et al.
    (2014) Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials 35:3840–3850.
    OpenUrl
  40. ↵
    1. Alibolandi M,
    2. Ramezani M,
    3. Abnous K,
    4. Hadizadeh F
    (2016) AS1411 Aptamer-Decorated Biodegradable Polyethylene Glycol-Poly(lactic-co-glycolic acid) Nanopolymersomes for the Targeted Delivery of Gemcitabine to Non-Small Cell Lung Cancer In Vitro. J Pharm Sci 105:1741–1750.
    OpenUrl
  41. ↵
    1. Liao ZX,
    2. Chuang EY,
    3. Lin CC,
    4. Ho YC,
    5. Lin KJ,
    6. Cheng PY,
    7. et al.
    (2015) An AS1411 aptamer-conjugated liposomal system containing a bubble-generating agent for tumor-specific chemotherapy that overcomes multidrug resistance. J Control Release 208:42–51.
    OpenUrl
  42. ↵
    1. Li X,
    2. Yu Y,
    3. Ji Q,
    4. Qiu L
    (2015) Targeted delivery of anticancer drugs by aptamer AS1411 mediated Pluronic F127/cyclodextrin-linked polymer composite micelles. Nanomedicine 11:175–184.
    OpenUrl
  43. ↵
    1. Lale SV,
    2. Aravind A,
    3. Kumar DS,
    4. Koul V
    (2014) AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules 15:1737–1752.
    OpenUrl
  44. ↵
    1. Krust B,
    2. El Khoury D,
    3. Nondier I,
    4. Soundaramourty C,
    5. Hovanessian AG
    (2011) Targeting surface nucleolin with multivalent HB-19 and related Nucant pseudopeptides results in distinctinhibitory mechanisms depending on the malignant tumor cell type. BMC Cancer 11:333.
    OpenUrlCrossRefPubMed
  45. ↵
    1. Destouches D,
    2. E Khoury D,
    3. Hamma-Kourbali Y,
    4. Krust B,
    5. Albanese P,
    6. et al.
    (2008) Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS One 3:e2518.
    OpenUrlCrossRefPubMed
  46. ↵
    1. Krust B,
    2. E Khoury D,
    3. Soundaramourty C,
    4. Nondier I,
    5. Hovanessian AG
    (2011) Suppression of tumorigenicity of rhabdoid tumor derived G401 cells by the multivalent HB-19 pseudopeptide that targets surface nucleolin. Biochimie 93:26–33.
    OpenUrl
  47. ↵
    1. Benedetti E,
    2. Antonosante A,
    3. d’Angelo M,
    4. Cristiano L,
    5. Galzio R,
    6. Destouches D,
    7. et al.
    (2015) Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model. Oncotarget 6:42091–42104.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Saudi Medical Journal: 37 (12)
Saudi Medical Journal
Vol. 37, Issue 12
1 Dec 2016
  • Table of Contents
  • Cover (PDF)
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Saudi Medical Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Roles of nucleolin
(Your Name) has sent you a message from Saudi Medical Journal
(Your Name) thought you would like to see the Saudi Medical Journal web site.
Citation Tools
Roles of nucleolin
Zhuo Chen, XinHua Xu
Saudi Medical Journal Dec 2016, 37 (12) 1312-1318; DOI: 10.15537/smj.2016.12.15972

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Roles of nucleolin
Zhuo Chen, XinHua Xu
Saudi Medical Journal Dec 2016, 37 (12) 1312-1318; DOI: 10.15537/smj.2016.12.15972
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Bookmark this article

Jump to section

  • Article
    • Abstract
    • References
  • Figures & Data
  • eLetters
  • References
  • Info & Metrics
  • PDF

Related Articles

  • No related articles found.
  • PubMed
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Harnessing artificial intelligence for infection control and prevention in hospitals
  • Effects of antidiabetic drugs on the level of serum uric acid in patients who have type 2 diabetes
  • The future of personalized medicine in Saudi Arabia
Show more Review Article

Similar Articles

CONTENT

  • home

JOURNAL

  • home

AUTHORS

  • home
Saudi Medical Journal

© 2025 Saudi Medical Journal Saudi Medical Journal is copyright under the Berne Convention and the International Copyright Convention.  Saudi Medical Journal is an Open Access journal and articles published are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC). Readers may copy, distribute, and display the work for non-commercial purposes with the proper citation of the original work. Electronic ISSN 1658-3175. Print ISSN 0379-5284.

Powered by HighWire